"""
Copyright (c) 2010-2018 CNRS / Centre de Recherche Astrophysique de Lyon
Copyright (c) 2012-2016 Laure Piqueras <laure.piqueras@univ-lyon1.fr>
Copyright (c) 2012-2014 Aurelien Jarno <aurelien.jarno@univ-lyon1.fr>
Copyright (c) 2013 Johan Richard <jrichard@univ-lyon1.fr>
Copyright (c) 2014-2019 Simon Conseil <simon.conseil@univ-lyon1.fr>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
import astropy.units as u
import datetime
import logging
import numpy as np
import warnings
from astropy.io import fits
from astropy.io.fits import Column, ImageHDU
from astropy.stats import sigma_clip
from astropy.table import Table
from os.path import basename
from ..obj import Image, WCS
from ..tools import add_mpdaf_method_keywords, copy_header
try:
import numexpr
except ImportError:
numexpr = False
__all__ = ('PixTable', 'PixTableMask', 'plot_autocal_factors',
'merge_autocal_factors')
_NOT_SET = object()
NIFUS = 24
NSLICES = 48
SKY_SEGMENTS = [0, 5000, 5265, 5466, 5658, 5850, 6120, 6440, 6678, 6931, 7211,
7450, 7668, 7900, 8120, 8330, 8565, 8731, 9012, 9275, 10000]
KEYWORD = 'HIERARCH ESO DRS MUSE PIXTABLE'
DEG2RAD = np.pi / 180
RAD2DEG = 180 / np.pi
def _get_file_basename(f):
"""Return a string with the basename of f if f is not None"""
return '' if f is None else basename(f)
[docs]
class PixTableMask:
"""PixTableMask class.
This class manages input/output for MUSE pixel mask files
Parameters
----------
filename : str or None
Name of the FITS table containing the masked column. If a PixTableMask
object is loaded from a FITS file, the others parameters are not read
but loaded from the FITS file.
maskfile : str or None
Name of the FITS image masking some objects.
maskcol : array of bool or None
pixtable's column corresponding to the mask
pixtable : str or None
Name of the corresponding pixel table.
Attributes
----------
filename : str
Name of the FITS table containing the masked column.
maskfile : str
Name of the FITS image masking some objects.
maskcol : array of bool
pixtable's column corresponding to the mask
pixtable : str
Name of the corresponding pixel table.
"""
def __init__(self, filename=None, maskfile=None, maskcol=None,
pixtable=None):
if filename is None:
self.maskfile = maskfile
self.maskcol = maskcol
self.pixtable = pixtable
else:
hdulist = fits.open(filename)
self.maskfile = hdulist[0].header['mask']
self.pixtable = hdulist[0].header['pixtable']
self.maskcol = np.bool_(hdulist['maskcol'].data[:, 0])
[docs]
def write(self, filename):
"""Save the object in a FITS file.
Parameters
----------
filename : str
The FITS filename.
"""
prihdu = fits.PrimaryHDU()
prihdu.header['date'] = (str(datetime.datetime.now()), 'creation date')
prihdu.header['author'] = ('MPDAF', 'origin of the file')
add_mpdaf_method_keywords(prihdu.header,
'mpdaf.drs.pixtable.mask_column',
[], [], [])
prihdu.header['pixtable'] = (basename(self.pixtable), 'pixtable')
prihdu.header['mask'] = (basename(self.maskfile),
'file to mask out all bright obj')
hdulist = [prihdu]
nrows = self.maskcol.shape[0]
hdulist.append(ImageHDU(
name='maskcol', data=np.int32(self.maskcol.reshape((nrows, 1)))))
hdu = fits.HDUList(hdulist)
hdu[1].header['BUNIT'] = 'boolean'
hdu.writeto(filename, overwrite=True, output_verify='fix')
def write(filename, xpos, ypos, lbda, data, dq, stat, origin, weight=None,
primary_header=None, save_as_ima=True, wcs=u.pix, wave=u.angstrom,
unit_data=u.count):
"""Save the object in a FITS file.
Parameters
----------
filename : str
The FITS filename.
save_as_ima : bool
If True, pixtable is saved as multi-extension FITS
"""
fits.conf.extension_name_case_sensitive = True
warnings.simplefilter("ignore")
if primary_header is not None:
header = copy_header(primary_header)
else:
header = fits.Header()
header['date'] = (str(datetime.datetime.now()), 'creation date')
header['author'] = ('MPDAF', 'origin of the file')
prihdu = fits.PrimaryHDU(header=header)
if save_as_ima:
nrows = xpos.shape[0]
hdulist = [
prihdu,
ImageHDU(name='xpos', data=np.float32(xpos.reshape((nrows, 1)))),
ImageHDU(name='ypos', data=np.float32(ypos.reshape((nrows, 1)))),
ImageHDU(name='lambda', data=np.float32(lbda.reshape((nrows, 1)))),
ImageHDU(name='data', data=np.float32(data.reshape((nrows, 1)))),
ImageHDU(name='dq', data=np.int32(dq.reshape((nrows, 1)))),
ImageHDU(name='stat', data=np.float32(stat.reshape((nrows, 1)))),
ImageHDU(name='origin', data=np.int32(origin.reshape((nrows, 1)))),
]
if weight is not None:
hdulist.append(
ImageHDU(name='weight',
data=np.float32(weight.reshape((nrows, 1)))))
hdu = fits.HDUList(hdulist)
hdu[1].header['BUNIT'] = wcs.to_string('fits')
hdu[2].header['BUNIT'] = wcs.to_string('fits')
hdu[3].header['BUNIT'] = wave.to_string('fits')
hdu[4].header['BUNIT'] = unit_data.to_string('fits')
hdu[6].header['BUNIT'] = (unit_data**2).to_string('fits')
else:
cols = [
Column(name='xpos', format='1E', unit=wcs.to_string('fits'),
array=np.float32(xpos)),
Column(name='ypos', format='1E', unit=wcs.to_string('fits'),
array=np.float32(ypos)),
Column(name='lambda', format='1E', unit=wave.to_string('fits'),
array=lbda),
Column(name='data', format='1E', unit=unit_data.to_string('fits'),
array=np.float32(data)),
Column(name='dq', format='1J', array=np.int32(dq)),
Column(name='stat', format='1E',
unit=(unit_data**2).to_string('fits'),
array=np.float32(stat)),
Column(name='origin', format='1J', array=np.int32(origin)),
]
if weight is not None:
cols.append(Column(name='weight', format='1E',
array=np.float32(weight)))
coltab = fits.ColDefs(cols)
tbhdu = fits.TableHDU(fits.FITS_rec.from_columns(coltab))
hdu = fits.HDUList([prihdu, tbhdu])
hdu.writeto(filename, overwrite=True, output_verify='fix')
warnings.simplefilter("default")
fits.conf.reset('extension_name_case_sensitive')
[docs]
def plot_autocal_factors(filename, savefig=None, plot_rejected=False,
sharex=True, sharey=True, figsize=4, cmap='Spectral',
plot_npts=False):
"""Plot the corrections computed by `PixTable.selfcalibrate`.
This also works for the AUTOCAL_FACTORS table from the DRS.
Parameters
----------
filename : str, `astropy.table.Table`
The DRS AUTOCAL_FACTORS corrections table.
savefig : str
File to which the plot is saved.
plot_rejected : bool
Also plot the rejected corrections. This only works with the DRS
AUTOCAL_FACTORS table.
sharex, sharey : bool
Controls sharing of properties among x/y axes.
figsize : float
Size of an individual plot.
cmap : str
Colormap.
"""
import matplotlib.pyplot as plt
t = Table.read(filename) if isinstance(filename, str) else filename
fig, axes = plt.subplots(6, 4, figsize=(4 * figsize, 6 * figsize),
sharex=sharex, sharey=sharey)
base = plt.cm.get_cmap(cmap)
palette = base(np.linspace(0, 1, 48)).tolist()
cm = base.from_list('Custom cmap', palette, len(palette))
key = 'npts' if plot_npts else 'corr'
# Handle the old format from MPDAF (columns have been renamed in the DRS
# version)
if 'slice' in t.colnames:
t.rename_column('slice', 'sli')
if 'correction' in t.colnames:
t.rename_column('correction', 'corr')
for ifu in range(1, 25):
ax = axes.flat[ifu - 1]
tt = t[t['ifu'] == ifu]
for sl in range(1, 49):
ts = tt[tt['sli'] == sl]
ax.plot(ts['quad'], ts[key], color=palette[sl - 1])
if 'corr_orig' in ts.colnames and plot_rejected and \
not plot_npts and not np.isnan(ts['corr_orig']).all():
ax.scatter(ts['quad'], ts['corr_orig'], s=20,
color=palette[sl - 1])
ax.set_title('IFU %s' % ifu)
ax.grid(True)
title = 'Number of points' if plot_npts else 'Correction factor'
fig.suptitle('{} (y) for each wavelength segment (x), each slice (color) '
'and each IFU'.format(title), fontsize=16)
import matplotlib as mpl
bounds = np.linspace(0, 48, 49)
norm = mpl.colors.BoundaryNorm(bounds, cm.N)
ax2 = fig.add_axes([0.1, 0.96, 0.8, 0.01])
mpl.colorbar.ColorbarBase(
ax2, cmap=cm, norm=norm, spacing='proportional', ticks=bounds + .5,
boundaries=bounds, format='%1i', orientation='horizontal')
fig.tight_layout(rect=(0, 0, 1, 0.95))
if savefig:
fig.savefig(savefig)
[docs]
def merge_autocal_factors(flist, outfile=None):
"""Merge corrections from AUTOCAL_FACTORS files, with sigma clipped mean.
Parameters
----------
flist : str
List of AUTOCAL_FACTORS files.
outfile : str
Output file.
"""
logger = logging.getLogger(__name__)
hdr = fits.getheader(flist[0])
nquad = len(hdr['ESO DRS MUSE LAMBDA* MIN'])
logger.info('first file has %d lambda bins', nquad)
# load all correction tables
corr = []
for f in flist:
# The DRS stores the corrections in a column with a fixed order for the
# ifu/quad/slices columns, so we suppose here that this order is always
# the same and we just combine the correction columns
tbl = Table.read(f)
assert len(tbl) == NIFUS * NSLICES * nquad
tbl['corr'][tbl['npts'] == 0] = np.nan
corr.append(tbl['corr'])
# Another way to proceed: create a cube of corrections
# cube = np.full((NIFUS, NSLICES, nquad), np.nan)
# cube[tbl['ifu'] - 1, tbl['sli'] - 1, tbl['quad'] - 1] = tbl['corr']
# corr.append(cube)
# stack corrections and compute its clipped mean/std
corr = np.ma.masked_invalid(corr)
scorr = sigma_clip(corr, axis=0)
nkeep = np.count_nonzero(~scorr.mask, axis=0)
nrej = np.count_nonzero(scorr.mask, axis=0)
meancorr = np.ma.mean(scorr, axis=0)
stdcorr = np.ma.std(scorr, axis=0)
# use the first one to create the output table
tab = Table.read(flist[0])
tab.remove_columns(['npts', 'corr_orig'])
tab['std_corr'] = stdcorr.filled(np.nan).ravel()
tab['corr'] = meancorr.filled(np.nan).ravel()
tab['nkeep'] = nkeep.ravel()
tab['nrej'] = nrej.ravel()
if outfile:
out = fits.HDUList()
with fits.open(flist[0]) as hdul:
out.append(hdul[0].copy())
out.append(fits.table_to_hdu(tab))
out.writeto(outfile, overwrite=True)
return tab
[docs]
class PixTable:
"""PixTable class.
This class manages input/output for MUSE pixel table files. The FITS file
is opened with memory mapping. Just the primary header and table dimensions
are loaded. The methods ``get_xpos``, ``get_ypos``, ``get_lambda``,
``get_data``, ``get_dq``, ``get_stat`` and ``get_origin`` must be used to
get columns data.
Parameters
----------
filename : str
The FITS file name. None by default.
Attributes
----------
filename : str
The FITS file name. None if any.
primary_header : `astropy.io.fits.Header`
The primary header.
nrows : int
Number of rows.
nifu : int
Number of merged IFUs that went into this pixel table.
wcs : `astropy.units.Unit`
Type of spatial coordinates of this pixel table (u.pix, u.deg or u.rad)
wave : `astropy.units.Unit`
Type of spectral coordinates of this pixel table
ima : bool
If True, pixtable is saved as multi-extension FITS image
instead of FITS binary table.
"""
def __init__(self, filename, xpos=None, ypos=None, lbda=None, data=None,
dq=None, stat=None, origin=None, weight=None,
primary_header=None, save_as_ima=True, wcs=u.pix,
wave=u.angstrom, unit_data=u.count):
self._logger = logging.getLogger(__name__)
self.filename = filename
self.wcs = wcs
self.wave = wave
self.ima = save_as_ima
self.xpos = None
self.ypos = None
self.lbda = None
self.data = None
self.stat = None
self.dq = None
self.origin = None
self.weight = None
self.nrows = 0
self.nifu = 0
self.unit_data = unit_data
self.xc = 0.0
self.yc = 0.0
if filename is not None:
self.hdulist = fits.open(self.filename, memmap=1)
self.primary_header = self.hdulist[0].header
self.nrows = self.hdulist[1].header["NAXIS2"]
self.ima = self.hdulist[1].header['XTENSION'] == 'IMAGE'
if self.ima:
self.wcs = u.Unit(self.hdulist['xpos'].header['BUNIT'])
self.wave = u.Unit(self.hdulist['lambda'].header['BUNIT'])
self.unit_data = u.Unit(self.hdulist['data'].header['BUNIT'])
else:
self.wcs = u.Unit(self.hdulist[1].header['TUNIT1'])
self.wave = u.Unit(self.hdulist[1].header['TUNIT3'])
self.unit_data = u.Unit(self.hdulist[1].header['TUNIT4'])
else:
self.hdulist = None
if (xpos is None or ypos is None or lbda is None or
data is None or dq is None or stat is None or
origin is None or primary_header is None):
self.primary_header = fits.Header()
else:
self.primary_header = primary_header
self.xpos = np.asarray(xpos)
self.ypos = np.asarray(ypos)
self.lbda = np.asarray(lbda)
self.data = np.asarray(data)
self.stat = np.asarray(stat)
self.dq = np.asarray(dq)
self.origin = np.asarray(origin)
self.nrows = xpos.shape[0]
for attr in (self.ypos, self.lbda, self.data, self.stat,
self.dq, self.origin):
if attr.shape[0] != self.nrows:
raise IOError('input data with different dimensions')
if weight is None or weight.shape[0] == self.nrows:
self.weight = weight
else:
raise IOError('input data with different dimensions')
if self.nrows != 0:
# Merged IFUs that went into this pixel tables
self.nifu = self.get_keyword("MERGED", 1)
projection = self.projection
if projection == 'projected': # spheric coordinates
keyx, keyy = 'RA', 'DEC'
elif projection == 'positioned':
keyx, keyy = 'CRVAL1', 'CRVAL2'
else:
self._logger.warning('Unknown projection: %s', projection)
try:
# center in degrees
cunit = u.Unit(self.primary_header["CUNIT1"])
self.xc = (self.primary_header[keyx] * cunit).to(u.deg).value
self.yc = (self.primary_header[keyy] * cunit).to(u.deg).value
except Exception:
try:
# center in pixels
self.xc = self.primary_header[keyx]
self.yc = self.primary_header[keyy]
except Exception:
pass
def __repr__(self):
msg = "<{}({} rows, {} ifus, {})>".format(
self.__class__.__name__, self.nrows, self.nifu, self.projection)
if self.skysub:
msg = msg[:-2] + ", sky-subtracted)>"
if self.fluxcal:
msg = msg[:-2] + ", flux-calibrated)>"
return msg
@property
def fluxcal(self):
"""If True, this pixel table was flux-calibrated."""
return self.get_keyword("FLUXCAL", False)
@property
def skysub(self):
"""If True, this pixel table was sky-subtracted."""
return self.get_keyword("SKYSUB", False)
@property
def projection(self):
"""Return the projection type.
- 'positioned' for positioned pixtables
- 'projected' for reduced pixtables
"""
wcs = self.get_keyword("WCS", None)
if wcs is not None:
return wcs.split(' ')[0]
[docs]
def copy(self):
"""Copy PixTable object in a new one and returns it."""
result = PixTable(self.filename)
result.wcs = self.wcs
result.wave = self.wave
result.unit_data = self.unit_data
result.ima = self.ima
if self.xpos is not None:
result.xpos = self.xpos.__copy__()
if self.ypos is not None:
result.ypos = self.ypos.__copy__()
if self.lbda is not None:
result.lbda = self.lbda.__copy__()
if self.data is not None:
result.data = self.data.__copy__()
if self.stat is not None:
result.stat = self.stat.__copy__()
if self.dq is not None:
result.dq = self.dq.__copy__()
if self.origin is not None:
result.origin = self.origin.__copy__()
if self.weight is not None:
result.weight = self.weight.__copy__()
result.nrows = self.nrows
result.nifu = self.nifu
result.primary_header = self.primary_header.copy()
result.xc = self.xc
result.yc = self.yc
return result
[docs]
def info(self):
"""Print information."""
hdr = self.primary_header
self._logger.info("%i merged IFUs went into this pixel table",
self.nifu)
if self.skysub:
self._logger.info("This pixel table was sky-subtracted")
if self.fluxcal:
self._logger.info("This pixel table was flux-calibrated")
wcs_key = "%s WCS" % KEYWORD
if wcs_key in hdr:
self._logger.info('%s (%s)', hdr[wcs_key], hdr.comments[wcs_key])
else:
self._logger.info('Unknown projection')
try:
self._logger.info(self.hdulist.info())
except Exception:
self._logger.info('No\tName\tType\tDim')
self._logger.info('0\tPRIMARY\tcard\t()')
# print "1\t\tTABLE\t(%iR,%iC)" % (self.nrows,self.ncols)
[docs]
def write(self, filename, save_as_ima=True):
"""Save the object in a FITS file.
Parameters
----------
filename : str
The FITS filename.
save_as_ima : bool
If True, pixtable is saved as multi-extension FITS image
instead of FITS binary table.
"""
write(filename, self.get_xpos(), self.get_ypos(),
self.get_lambda(), self.get_data(), self.get_dq(),
self.get_stat(), self.get_origin(), self.get_weight(),
self.primary_header, save_as_ima, self.wcs, self.wave,
self.unit_data)
self.filename = filename
self.ima = save_as_ima
[docs]
def get_column(self, name, ksel=None):
"""Load a column and return it.
Parameters
----------
name : str or attribute
Name of the column.
ksel : output of np.where
Elements depending on a condition.
Returns
-------
out : numpy.array
"""
attr_name = 'lbda' if name == 'lambda' else name
attr = getattr(self, attr_name)
if attr is not None:
if ksel is None:
return attr
else:
return attr[ksel]
else:
if self.hdulist is None:
return None
else:
if ksel is None:
if self.ima:
column = self.hdulist[name].data[:, 0]
else:
column = self.hdulist[1].data.field(name)
else:
if isinstance(ksel, tuple):
ksel = ksel[0]
if self.ima:
column = self.hdulist[name].data[ksel, 0]
else:
column = self.hdulist[1].data.field(name)[ksel]
if np.issubdtype(column.dtype, np.floating):
# Ensure that float values are converted to double
column = column.astype(float)
return column
[docs]
def set_column(self, name, data, ksel=None):
"""Set a column (or a part of it).
Parameters
----------
name : str or attribute
Name of the column.
data : numpy.array
data values
ksel : output of np.where
Elements depending on a condition.
"""
attr_name = 'lbda' if name == 'lambda' else name
data = np.asarray(data)
if ksel is None:
assert data.shape[0] == self.nrows, 'Wrong dimension number'
setattr(self, attr_name, data)
else:
if getattr(self, attr_name) is None:
setattr(self, attr_name, getattr(self, 'get_' + name)())
attr = getattr(self, attr_name)
attr[ksel] = data
[docs]
def get_row(self, idx):
"""Return a row of the pixtable, or rows if given a list of indices.
Parameters
----------
idx : int or list of int or ndarray
The row indices.
Returns
-------
dict
The method returns a dict with a value or array of values for each
column of the pixtable.
"""
return {
'xpos': self.get_xpos(idx),
'ypos': self.get_ypos(idx),
'lbda': self.get_lambda(idx),
'data': self.get_data(idx),
'stat': self.get_stat(idx),
'dq': self.get_dq(idx),
'origin': self.get_origin(idx),
}
[docs]
def get_xpos(self, ksel=None, unit=None):
"""Load the xpos column and return it.
Parameters
----------
ksel : output of np.where
Elements depending on a condition.
unit : `astropy.units.Unit`
Unit of the returned data.
Returns
-------
out : numpy.array
"""
if unit is None:
return self.get_column('xpos', ksel=ksel)
else:
return (self.get_column('xpos', ksel=ksel) *
self.wcs).to(unit).value
[docs]
def set_xpos(self, xpos, ksel=None, unit=None):
"""Set xpos column (or a part of it).
Parameters
----------
xpos : numpy.array
xpos values
ksel : output of np.where
Elements depending on a condition.
unit : `astropy.units.Unit`
unit of the xpos column in input.
"""
if unit is not None:
xpos = (xpos * unit).to(self.wcs).value
self.set_column('xpos', xpos, ksel=ksel)
self.set_keyword("LIMITS X LOW", float(self.xpos.min()))
self.set_keyword("LIMITS X HIGH", float(self.xpos.max()))
[docs]
def get_ypos(self, ksel=None, unit=None):
"""Load the ypos column and return it.
Parameters
----------
ksel : output of np.where
Elements depending on a condition.
unit : `astropy.units.Unit`
Unit of the returned data.
Returns
-------
out : numpy.array
"""
if unit is None:
return self.get_column('ypos', ksel=ksel)
else:
return (self.get_column('ypos', ksel=ksel) *
self.wcs).to(unit).value
[docs]
def set_ypos(self, ypos, ksel=None, unit=None):
"""Set ypos column (or a part of it).
Parameters
----------
ypos : numpy.array
ypos values
ksel : output of np.where
Elements depending on a condition.
unit : `astropy.units.Unit`
unit of the ypos column in input.
"""
if unit is not None:
ypos = (ypos * unit).to(self.wcs).value
self.set_column('ypos', ypos, ksel=ksel)
self.set_keyword("LIMITS Y LOW", float(self.ypos.min()))
self.set_keyword("LIMITS Y HIGH", float(self.ypos.max()))
[docs]
def get_lambda(self, ksel=None, unit=None):
"""Load the lambda column and return it.
Parameters
----------
ksel : output of np.where
Elements depending on a condition.
unit : `astropy.units.Unit`
Unit of the returned data.
Returns
-------
out : numpy.array
"""
if unit is None:
return self.get_column('lambda', ksel=ksel)
else:
return (self.get_column('lambda', ksel=ksel) *
self.wave).to(unit).value
[docs]
def set_lambda(self, lbda, ksel=None, unit=None):
"""Set lambda column (or a part of it).
Parameters
----------
lbda : numpy.array
lbda values
ksel : output of np.where
Elements depending on a condition.
unit : `astropy.units.Unit`
unit of the lambda column in input.
"""
if unit is not None:
lbda = (lbda * unit).to(self.wave).value
self.set_column('lambda', lbda, ksel=ksel)
self.set_keyword("LIMITS LAMBDA LOW", float(self.lbda.min()))
self.set_keyword("LIMITS LAMBDA HIGH", float(self.lbda.max()))
[docs]
def get_data(self, ksel=None, unit=None):
"""Load the data column and return it.
Parameters
----------
ksel : output of np.where
Elements depending on a condition.
unit : `astropy.units.Unit`
Unit of the returned data.
Returns
-------
out : numpy.array
"""
if unit is None:
return self.get_column('data', ksel=ksel)
else:
return (self.get_column('data', ksel=ksel) *
self.unit_data).to(unit).value
[docs]
def set_data(self, data, ksel=None, unit=None):
"""Set data column (or a part of it).
Parameters
----------
data : numpy.array
data values
ksel : output of np.where
Elements depending on a condition.
unit : `astropy.units.Unit`
unit of the data column in input.
"""
if unit is not None:
data = (data * unit).to(self.unit_data).value
self.set_column('data', data, ksel=ksel)
[docs]
def get_stat(self, ksel=None, unit=None):
"""Load the stat column and return it.
Parameters
----------
ksel : output of np.where
Elements depending on a condition.
unit : `astropy.units.Unit`
Unit of the returned data.
Returns
-------
out : numpy.array
"""
if unit is None:
return self.get_column('stat', ksel=ksel)
else:
return (self.get_column('stat', ksel=ksel) *
(self.unit_data**2)).to(unit).value
[docs]
def set_stat(self, stat, ksel=None, unit=None):
"""Set stat column (or a part of it).
Parameters
----------
stat : numpy.array
stat values
ksel : output of np.where
Elements depending on a condition.
unit : `astropy.units.Unit`
unit of the stat column in input.
"""
if unit is not None:
stat = (stat * unit).to(self.unit_data**2).value
self.set_column('stat', stat, ksel=ksel)
[docs]
def get_dq(self, ksel=None):
"""Load the dq column and return it.
Parameters
----------
ksel : output of np.where
Elements depending on a condition.
Returns
-------
out : numpy.array
"""
return self.get_column('dq', ksel=ksel)
[docs]
def set_dq(self, dq, ksel=None):
"""Set dq column (or a part of it).
Parameters
----------
dq : numpy.array
dq values
ksel : output of np.where
Elements depending on a condition.
"""
self.set_column('dq', dq, ksel=ksel)
[docs]
def get_origin(self, ksel=None):
"""Load the origin column and return it.
Parameters
----------
ksel : output of np.where
Elements depending on a condition.
Returns
-------
out : numpy.array
"""
return self.get_column('origin', ksel=ksel)
[docs]
def set_origin(self, origin, ksel=None):
"""Set origin column (or a part of it).
Parameters
----------
origin : numpy.array
origin values
ksel : output of np.where
Elements depending on a condition.
"""
self.set_column('origin', origin, ksel=ksel)
ifu = self.origin2ifu(self.origin)
sli = self.origin2slice(self.origin)
self.set_keyword("LIMITS IFU LOW", int(ifu.min()))
self.set_keyword("LIMITS IFU HIGH", int(ifu.max()))
self.set_keyword("LIMITS SLICE LOW", int(sli.min()))
self.set_keyword("LIMITS SLICE HIGH", int(sli.max()))
# merged pixtable
if self.nifu > 1:
self.set_keyword("MERGED", len(np.unique(ifu)))
[docs]
def get_weight(self, ksel=None):
"""Load the weight column and return it.
Parameters
----------
ksel : output of np.where
Elements depending on a condition.
Returns
-------
out : numpy.array
"""
wght = self.get_keyword("WEIGHTED", False)
return self.get_column('weight', ksel=ksel) if wght else None
[docs]
def set_weight(self, weight, ksel=None):
"""Set weight column (or a part of it).
Parameters
----------
weight : numpy.array
weight values
ksel : output of np.where
Elements depending on a condition.
"""
self.set_column('weight', weight, ksel=ksel)
[docs]
def get_exp(self):
"""Load the exposure numbers and return it as a column.
Returns
-------
out : numpy.memmap
"""
try:
nexp = self.get_keyword("COMBINED")
exp = np.empty(shape=self.nrows)
for i in range(1, nexp + 1):
first = self.get_keyword("EXP%i FIRST" % i)
last = self.get_keyword("EXP%i LAST" % i)
exp[first:last + 1] = i
except Exception:
exp = None
return exp
[docs]
def select_lambda(self, lbda, unit=u.angstrom):
"""Return a mask corresponding to the given wavelength range.
Parameters
----------
lbda : (float, float)
(min, max) wavelength range in angstrom.
unit : `astropy.units.Unit`
Unit of the wavelengths in input.
Returns
-------
out : array of bool
mask
"""
arr = self.get_lambda()
mask = np.zeros(self.nrows, dtype=bool)
if numexpr:
for l1, l2 in lbda:
l1 = (l1 * unit).to(self.wave).value
l2 = (l2 * unit).to(self.wave).value
mask |= numexpr.evaluate('(arr >= l1) & (arr < l2)')
else:
for l1, l2 in lbda:
l1 = (l1 * unit).to(self.wave).value
l2 = (l2 * unit).to(self.wave).value
mask |= (arr >= l1) & (arr < l2)
return mask
[docs]
def select_stacks(self, stacks, origin=None):
"""Return a mask corresponding to given stacks.
Parameters
----------
stacks : list of int
Stacks numbers (1,2,3 or 4)
Returns
-------
out : array of bool
mask
"""
from ..MUSE import Slicer
assert min(stacks) > 0
assert max(stacks) < 5
sl = sorted([Slicer.sky2ccd(i) for st in stacks
for i in range(1 + 12 * (st - 1), 12 * st - 1)])
self._logger.debug('Extract stack %s -> slices %s', stacks, sl)
return self.select_slices(sl, origin=origin)
[docs]
def select_slices(self, slices, origin=None):
"""Return a mask corresponding to given slices.
Parameters
----------
slices : list of int
Slice number on the CCD.
Returns
-------
out : array of bool
mask
"""
col_origin = origin if origin is not None else self.get_origin()
col_sli = self.origin2slice(col_origin)
if numexpr:
mask = np.zeros(self.nrows, dtype=bool)
for s in slices:
mask |= numexpr.evaluate('col_sli == s')
return mask
else:
return np.isin(col_sli, slices)
[docs]
def select_ifus(self, ifus, origin=None):
"""Return a mask corresponding to given ifus.
Parameters
----------
ifu : int or list
IFU number.
Returns
-------
out : array of bool
mask
"""
col_origin = origin if origin is not None else self.get_origin()
col_ifu = self.origin2ifu(col_origin)
if numexpr:
mask = np.zeros(self.nrows, dtype=bool)
for ifu in ifus:
mask |= numexpr.evaluate('col_ifu == ifu')
return mask
else:
return np.isin(col_ifu, ifus)
[docs]
def select_exp(self, exp, col_exp):
"""Return a mask corresponding to given exposure numbers.
Parameters
----------
exp : list of int
List of exposure numbers
Returns
-------
out : array of bool
mask
"""
mask = np.zeros(self.nrows, dtype=bool)
if numexpr:
for iexp in exp:
mask |= numexpr.evaluate('col_exp == iexp')
else:
for iexp in exp:
mask |= (col_exp == iexp)
return mask
[docs]
def select_xpix(self, xpix, origin=None):
"""Return a mask corresponding to given detector pixels.
Parameters
----------
xpix : list
[(min, max)] pixel range along the X axis
Returns
-------
out : array of bool
mask
"""
col_origin = origin if origin is not None else self.get_origin()
col_xpix = self.origin2xpix(col_origin)
if hasattr(xpix, '__iter__'):
mask = np.zeros(self.nrows, dtype=bool)
if numexpr:
for x1, x2 in xpix:
mask |= numexpr.evaluate('(col_xpix >= x1) & '
'(col_xpix < x2)')
else:
for x1, x2 in xpix:
mask |= (col_xpix >= x1) & (col_xpix < x2)
else:
x1, x2 = xpix
if numexpr:
mask = numexpr.evaluate('(col_xpix >= x1) & (col_xpix < x2)')
else:
mask = (col_xpix >= x1) & (col_xpix < x2)
return mask
[docs]
def select_ypix(self, ypix, origin=None):
"""Return a mask corresponding to given detector pixels.
Parameters
----------
ypix : list
[(min, max)] pixel range along the Y axis
Returns
-------
out : array of bool
mask
"""
col_origin = origin if origin is not None else self.get_origin()
col_ypix = self.origin2ypix(col_origin)
if hasattr(ypix, '__iter__'):
mask = np.zeros(self.nrows, dtype=bool)
if numexpr:
for y1, y2 in ypix:
mask |= numexpr.evaluate('(col_ypix >= y1) & '
'(col_ypix < y2)')
else:
for y1, y2 in ypix:
mask |= (col_ypix >= y1) & (col_ypix < y2)
else:
y1, y2 = ypix
if numexpr:
mask = numexpr.evaluate('(col_ypix >= y1) & (col_ypix < y2)')
else:
mask = (col_ypix >= y1) & (col_ypix < y2)
return mask
[docs]
def select_sky(self, sky):
"""Return a mask corresponding to the given aperture on the sky
(center, size and shape)
Parameters
----------
sky : (float, float, float, char)
(y, x, size, shape) extract an aperture on the sky, defined by
a center (y, x) in degrees/pixel, a shape ('C' for circular, 'S'
for square) and size (radius or half side length) in arcsec/pixels.
Returns
-------
out : array of bool
mask
"""
xpos, ypos = self.get_pos_sky() # in degree or pixel here
mask = np.zeros(self.nrows, dtype=bool)
if numexpr:
pi = np.pi # NOQA
for y0, x0, size, shape in sky:
if shape == 'C':
if self.wcs == u.deg or self.wcs == u.rad:
mask |= numexpr.evaluate(
'(((xpos - x0) * 3600 * cos(y0 * pi / 180.)) ** 2 '
'+ ((ypos - y0) * 3600) ** 2) < size ** 2')
else:
mask |= numexpr.evaluate(
'((xpos - x0) ** 2 + (ypos - y0) ** 2) < size ** 2')
elif shape == 'S':
if self.wcs == u.deg or self.wcs == u.rad:
mask |= numexpr.evaluate(
'(abs((xpos - x0) * 3600 * cos(y0 * pi / 180.)) < size) '
'& (abs((ypos - y0) * 3600) < size)')
else:
mask |= numexpr.evaluate(
'(abs(xpos - x0) < size) & (abs(ypos - y0) < size)')
else:
raise ValueError('Unknown shape parameter')
else:
for y0, x0, size, shape in sky:
if shape == 'C':
if self.wcs == u.deg or self.wcs == u.rad:
mask |= (((xpos - x0) * 3600
* np.cos(y0 * DEG2RAD)) ** 2
+ ((ypos - y0) * 3600) ** 2) \
< size ** 2
else:
mask |= ((xpos - x0) ** 2
+ (ypos - y0) ** 2) < size ** 2
elif shape == 'S':
if self.wcs == u.deg or self.wcs == u.rad:
mask |= (np.abs((xpos - x0) * 3600
* np.cos(y0 * DEG2RAD)) < size) \
& (np.abs((ypos - y0) * 3600) < size)
else:
mask |= (np.abs(xpos - x0) < size) \
& (np.abs(ypos - y0) < size)
else:
raise ValueError('Unknown shape parameter')
return mask
[docs]
def origin2ifu(self, origin):
"""Converts the origin value and returns the ifu number.
Parameters
----------
origin : int
Origin value.
Returns
-------
out : int
"""
return (origin >> 6) & 0x1f
[docs]
def origin2slice(self, origin):
"""Converts the origin value and returns the slice number.
Parameters
----------
origin : int
Origin value.
Returns
-------
out : int
"""
return origin & 0x3f
[docs]
def origin2ypix(self, origin):
"""Converts the origin value and returns the y coordinates.
Parameters
----------
origin : int
Origin value.
Returns
-------
out : float
"""
return ((origin >> 11) & 0x1fff) - 1
[docs]
def origin2xoffset(self, origin, ifu=None, sli=None):
"""Converts the origin value and returns the x coordinates offset.
Parameters
----------
origin : int
Origin value.
Returns
-------
out : float
"""
col_ifu = ifu if ifu is not None else self.origin2ifu(origin)
col_slice = sli if sli is not None else self.origin2slice(origin)
key = "EXP0 IFU%02d SLICE%02d XOFFSET"
if isinstance(origin, np.ndarray):
ifus = np.unique(col_ifu)
slices = np.unique(col_slice)
offsets = np.zeros((ifus.max() + 1, slices.max() + 1),
dtype=np.int32)
for ifu in ifus:
for sl in slices:
offsets[ifu, sl] = self.get_keyword(key % (ifu, sl))
xoffset = offsets[col_ifu, col_slice]
else:
xoffset = self.get_keyword(key % (col_ifu, col_slice))
return xoffset
[docs]
def origin2xpix(self, origin, ifu=None, sli=None):
"""Converts the origin value and returns the x coordinates.
Parameters
----------
origin : int
Origin value.
Returns
-------
out : float
"""
return (self.origin2xoffset(origin, ifu=ifu, sli=sli) +
((origin >> NIFUS) & 0x7f) - 1)
[docs]
def origin2coords(self, origin):
"""Converts the origin value and returns (ifu, slice, ypix, xpix).
Parameters
----------
origin : int
Origin value.
Returns
-------
out : (int, int, float, float)
"""
ifu, sli = self.origin2ifu(origin), self.origin2slice(origin)
return (ifu, sli, self.origin2ypix(origin),
self.origin2xpix(origin, ifu=ifu, sli=sli))
def _get_pos_sky(self, xpos, ypos):
if self.projection == 'projected': # spheric coordinates
phi = xpos
theta = ypos + np.pi / 2
dp = self.yc * DEG2RAD
ra = np.arctan2(np.cos(theta) * np.sin(phi),
np.sin(theta) * np.cos(dp) +
np.cos(theta) * np.sin(dp) * np.cos(phi)) * RAD2DEG
xpos_sky = self.xc + ra
ypos_sky = np.arcsin(np.sin(theta) * np.sin(dp) -
np.cos(theta) * np.cos(dp) * np.cos(phi)) * RAD2DEG
else:
if self.wcs == u.deg:
# dp = self.yc * DEG2RAD
xpos_sky = self.xc + xpos
ypos_sky = self.yc + ypos
elif self.wcs == u.rad:
# dp = self.yc * DEG2RAD
xpos_sky = self.xc + xpos * RAD2DEG
ypos_sky = self.yc + ypos * RAD2DEG
else:
xpos_sky = self.xc + xpos
ypos_sky = self.yc + ypos
return xpos_sky, ypos_sky
def _get_pos_sky_numexpr(self, xpos, ypos):
pi = np.pi # NOQA
xc = self.xc # NOQA
yc = self.yc # NOQA
if self.projection == 'projected': # spheric coordinates
phi = xpos # NOQA
theta = numexpr.evaluate("ypos + pi/2")
dp = numexpr.evaluate("yc * pi / 180")
ra = numexpr.evaluate("arctan2(cos(theta) * sin(phi), sin(theta) * cos(dp) + cos(theta) * sin(dp) * cos(phi)) * 180 / pi")
xpos_sky = numexpr.evaluate("xc + ra")
ypos_sky = numexpr.evaluate("arcsin(sin(theta) * sin(dp) - cos(theta) * cos(dp) * cos(phi)) * 180 / pi")
else:
if self.wcs == u.deg:
# dp = numexpr.evaluate("yc * pi / 180")
xpos_sky = numexpr.evaluate("xc + xpos")
ypos_sky = numexpr.evaluate("yc + ypos")
elif self.wcs == u.rad:
# dp = numexpr.evaluate("yc * pi / 180")
xpos_sky = numexpr.evaluate("xc + xpos * 180 / pi")
ypos_sky = numexpr.evaluate("yc + ypos * 180 / pi")
else:
xpos_sky = numexpr.evaluate("xc + xpos")
ypos_sky = numexpr.evaluate("yc + ypos")
return xpos_sky, ypos_sky
[docs]
def get_pos_sky(self, xpos=None, ypos=None):
"""Return the absolute position on the sky in degrees/pixel.
Parameters
----------
xpos : numpy.array
xpos values
ypos : numpy.array
ypos values
Returns
-------
xpos_sky, ypos_sky : numpy.array, numpy.array
"""
if xpos is None:
xpos = self.get_xpos()
if ypos is None:
ypos = self.get_ypos()
if numexpr:
return self._get_pos_sky_numexpr(xpos, ypos)
else:
return self._get_pos_sky(xpos, ypos)
[docs]
def get_keyword(self, key, default=_NOT_SET):
"""Return the keyword value corresponding to key, adding the keyword
prefix (``'HIERARCH ESO DRS MUSE PIXTABLE'``).
Parameters
----------
key : str
Keyword.
Returns
-------
out : keyword value
"""
try:
return self.primary_header['{} {}'.format(KEYWORD, key)]
except KeyError:
if default is not _NOT_SET:
return default
else:
raise
[docs]
def set_keyword(self, key, val):
"""Set the keyword value corresponding to key, adding the keyword
prefix (``'HIERARCH ESO DRS MUSE PIXTABLE'``).
Parameters
----------
key : str
Keyword.
val : str or int or float
Value.
"""
self.primary_header['{} {}'.format(KEYWORD, key)] = val
[docs]
def reconstruct_det_image(self, xstart=None, ystart=None,
xstop=None, ystop=None):
"""Reconstructs the image on the detector from the pixtable.
The pixtable must concerns only one IFU, otherwise an exception is
raised.
Returns
-------
out : `~mpdaf.obj.Image`
"""
if self.nrows == 0:
return None
if self.nifu != 1:
raise ValueError('Pixtable contains multiple IFU')
col_data = self.get_data()
col_origin = self.get_origin()
ifu = np.empty(self.nrows, dtype='uint16')
sl = np.empty(self.nrows, dtype='uint16')
xpix = np.empty(self.nrows, dtype='uint16')
ypix = np.empty(self.nrows, dtype='uint16')
ifu, sl, ypix, xpix = self.origin2coords(col_origin)
if len(np.unique(ifu)) != 1:
raise ValueError('Pixtable contains multiple IFU')
if xstart is None:
xstart = xpix.min()
if xstop is None:
xstop = xpix.max()
if ystart is None:
ystart = ypix.min()
if ystop is None:
ystop = ypix.max()
# xstart, xstop = xpix.min(), xpix.max()
# ystart, ystop = ypix.min(), ypix.max()
image = np.zeros((ystop - ystart + 1,
xstop - xstart + 1), dtype='float') * np.NaN
image[ypix - ystart, xpix - xstart] = col_data
wcs = WCS(crval=(ystart, xstart))
return Image(data=image, wcs=wcs, unit=self.unit_data, copy=False)
[docs]
def reconstruct_det_waveimage(self):
"""Reconstructs an image of wavelength values on the detector from the
pixtable. The pixtable must concerns only one IFU, otherwise an
exception is raised.
Returns
-------
out : `~mpdaf.obj.Image`
"""
if self.nrows == 0:
return None
if self.nifu != 1:
raise ValueError('Pixtable contains multiple IFU')
col_origin = self.get_origin()
col_lambdas = self.get_lambda()
ifu = np.empty(self.nrows, dtype='uint16')
sl = np.empty(self.nrows, dtype='uint16')
xpix = np.empty(self.nrows, dtype='uint16')
ypix = np.empty(self.nrows, dtype='uint16')
ifu, sl, ypix, xpix = self.origin2coords(col_origin)
if len(np.unique(ifu)) != 1:
raise ValueError('Pixtable contains multiple IFU')
xstart, xstop = xpix.min(), xpix.max()
ystart, ystop = ypix.min(), ypix.max()
image = np.zeros((ystop - ystart + 1, xstop - xstart + 1),
dtype='float')
image[ypix - ystart, xpix - xstart] = col_lambdas
wcs = WCS(crval=(ystart, xstart))
return Image(data=image, wcs=wcs, unit=self.wave, copy=False)
[docs]
def mask_column(self, maskfile=None):
"""Compute the mask column corresponding to a mask file.
Parameters
----------
maskfile : str
Path to a FITS image file with WCS information, used to mask
out bright continuum objects present in the FoV. Values must
be 0 for the background and >0 for objects.
Returns
-------
out : `mpdaf.drs.PixTableMask`
"""
if maskfile is None:
return np.zeros(self.nrows, dtype=bool)
pos = np.array(self.get_pos_sky()[::-1]).T
ima_mask = Image(maskfile, dtype=bool)
sky = ima_mask.wcs.sky2pix(pos, nearest=True, unit=u.deg).T
mask = ima_mask.data.data[sky[0], sky[1]]
return PixTableMask(maskfile=maskfile, maskcol=mask,
pixtable=self.filename)