"""
Copyright (c) 2010-2018 CNRS / Centre de Recherche Astrophysique de Lyon
Copyright (c) 2015-2017 Laure Piqueras <laure.piqueras@univ-lyon1.fr>
Copyright (c) 2015-2019 Johan Richard <jrichard@univ-lyon1.fr>
Copyright (c) 2015-2019 Simon Conseil <simon.conseil@univ-lyon1.fr>
Copyright (c) 2015-2019 Roland Bacon <roland.bacon@univ-lyon1.fr>
Copyright (c) 2016 Martin Shepherd <martin.shepherd@univ-lyon1.fr>
Copyright (c) 2018-2019 David Carton <cartondj@gmail.com>
Copyright (c) 2018 Yannick Roehlly <yannick.roehlly@univ-lyon1.fr>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
import astropy.units as u
import collections.abc
import datetime
import glob
import logging
import numpy as np
import os
import re
import shutil
import warnings
from astropy.io import fits as pyfits
from astropy.table import Table, MaskedColumn, Column, vstack
from functools import partial
from numpy import ma
from scipy.optimize import leastsq
from ..obj import Cube, Image, Spectrum, vactoair, airtovac, plot_rgb
from ..obj.objs import is_int, is_float, bounding_box
from ..tools import MpdafWarning
from ..MUSE import FieldsMap, FSFModel, MoffatModel2
from ..MUSE.PSF import MOFFAT1, create_psf_cube
from ..sdetect.sea import (segmentation, findCentralDetection,
union, intersection, compute_optimal_spectrum)
__all__ = ('Source', 'SourceList', 'matchlines', 'crackz')
emlines = {1215.67: 'LYALPHA1216',
1550.0: 'CIV1550',
1909.0: 'CIII]1909',
2326.0: 'CII2326',
2801.0: 'MgII2801',
3726.032: '[OII]3726',
3728.8149: '[OII]3729',
3798.6001: 'HTHETA3799',
3834.6599: 'HETA3835',
3869.0: '[NeIII]3869',
3888.7: 'HZETA3888',
3967.0: '[NeIII]3967',
4102.0: 'HDELTA4102',
4340.0: 'HGAMMA4340',
4861.3198: 'HBETA4861',
4959.0: '[OIII]4959',
5007.0: '[OIII]5007',
6548.0: '[NII]6548',
6562.7998: 'HALPHA6563',
6583.0: '[NII]6583',
6716.0: '[SII]6716',
6731.0: '[SII]6731'}
STR_DTYPE = 'U20'
TABLES_SCHEMA = {
# Version of the source format, see SourceICD.pdf
'version': '0.6',
'MAG': {
'BAND': {
'description': 'Filter name',
'dtype': STR_DTYPE,
'primary_index': True
},
'MAG': {
'format': '.3f',
'description': 'AB Magnitude',
'unit': 'mag',
'dtype': 'f8'
},
'MAG_ERR': {
'format': '.3f',
'description': 'Error in AB Magnitude',
'unit': 'mag',
'dtype': 'f8'
}
},
'Z': {
'Z': {
'description': 'Estimated redshift',
'format': '.4f',
'unit': '', # dimensionless_unscaled
'dtype': 'f8'
},
'Z_MIN': {
'description': 'Lower bound of estimated redshift',
'format': '.4f',
'unit': '', # dimensionless_unscaled
'dtype': 'f8'
},
'Z_MAX': {
'description': 'Upper bound of estimated redshift',
'format': '.4f',
'unit': '', # dimensionless_unscaled
'dtype': 'f8'
},
'Z_DESC': {
'description': 'Type of redshift',
'dtype': STR_DTYPE,
'primary_index': True
}
}
}
def _set_table_attributes(name, table):
for colname, attributes in TABLES_SCHEMA[name].items():
for attr, value in attributes.items():
if attr not in ('dtype', 'primary_index'):
setattr(table[colname], attr, value)
elif attr == 'primary_index':
table.add_index(colname, unique=True)
def _headercorrected(hdr):
"""Handle keywords that have been renamed."""
# COM*** -> COMMENT
i = 1
while 'COM%03d' % i in hdr:
value = hdr['COM%03d' % i]
comment = hdr.cards['COM%03d' % i].comment
hdr['COMMENT'] = '[%s] %s' % (comment, value)
del hdr['COM%03d' % i]
i += 1
# HIST*** -> HISTORY
i = 1
while 'HIST%03d' % i in hdr:
value = hdr['HIST%03d' % i]
comment = hdr.cards['HIST%03d' % i].comment
hdr['HISTORY'] = '%s (%s)' % (value, comment)
del hdr['HIST%03d' % i]
i += 1
# ORIGIN -> FROM
if 'ORIGIN' in hdr.keys():
hdr.rename_keyword('ORIGIN', 'FROM')
if 'ORIGIN_V' in hdr.keys():
hdr.rename_keyword('ORIGIN_V', 'FROM_V')
# SOURCE_V -> FORMAT
if 'SOURCE_V' in hdr.keys():
hdr.rename_keyword('SOURCE_V', 'FORMAT')
# SRC_VERS -> SRC_V
if 'SRC_VERS' in hdr.keys():
hdr.rename_keyword('SRC_VERS', 'SRC_V')
[docs]
def matchlines(nlines, wl, z, eml):
"""Try to match all the lines given.
For each line computes the distance in Angstroms to the closest line.
Add the errors
Algorithm from Johan Richard (johan.richard@univ-lyon1.fr)
Parameters
----------
nlines : int
Number of emission lines
wl : array of float
Table of wavelengths
z : float
Redshift to test
eml : dict
Full catalog of lines to test redshift. key: wavelength, value: name.
Returns
-------
out : (array of float, array of float)
(list of wavelengths, errors)
"""
lbdas = np.array(list(eml.keys()))
a = (wl[:, np.newaxis] / (1 + z) - lbdas[np.newaxis, :]) ** 2.0
jfound = np.argmin(a, axis=1)
error = np.diag(a[:, jfound]).sum()
error = np.sqrt(error / nlines)
if((nlines >= 2)and(jfound[0] == jfound[1])):
error = 15.
return(error, jfound)
[docs]
def crackz(nlines, wl, flux, eml, zguess=None):
"""Method to estimate the best redshift matching a list of emission lines.
Algorithm from Johan Richard (johan.richard@univ-lyon1.fr)
Parameters
----------
nlines : int
Number of emission lines
wl : array of float
Table of observed line wavelengths
flux : array of float
Table of line fluxes
eml : dict
Full catalog of lines to test redshift
zguess : float
Guess redshift to test (only this)
Returns
-------
out : (float, float, int, list of float, list of float, list of str)
(redshift, redshift error, list of wavelengths, list of fluxes,
list of lines names)
"""
errmin = 3.0
found = 0
lnames = np.array(list(eml.values()))
lbdas = np.array(list(eml.keys()))
if(nlines == 0):
return -9999.0, -9999.0, 0, [], [], []
if(nlines == 1):
return -9999.0, -9999.0, 1, wl, flux, ["Lya/[OII]"]
if zguess:
(error, jfound) = matchlines(nlines, wl, zguess, eml)
if(error < errmin):
return zguess, -9999.0, 1, wl, flux, list(lnames[jfound[0]])
else:
return zguess, -9999.0, 1, [], [], []
# test all redshift combinations
for n in range(nlines):
for p in range(lbdas.shape[0]):
ztest = wl[n] / lbdas[p] - 1.0
if(ztest >= 0):
(error, jfound) = matchlines(nlines, wl, ztest, eml)
if(error < errmin):
errmin = error
found = 1
zfound = ztest
jfinal = jfound.copy()
if(found == 1):
jfinal = np.array(jfinal).astype(int)
return zfound, errmin / np.min(lbdas[jfinal]), nlines, \
wl, flux, list(lnames[jfinal[0:nlines]])
else:
if(nlines > 3):
# keep the three brightest
ksel = np.argsort(flux)[-1:-4:-1]
return crackz(3, wl[ksel], flux[ksel], eml)
if(nlines == 3):
# keep the two brightest
ksel = np.argsort(flux)[-1:-3:-1]
return crackz(2, wl[ksel], flux[ksel], eml)
if(nlines == 2):
# keep the brightest
ksel = np.argsort(flux)[-1]
return crackz(1, [wl[ksel]], [flux[ksel]], eml)
return -9999.0, -9999.0, 0, [], [], []
def _mask_invalid(tables):
tables = [tables] if isinstance(tables, Table) else tables
for tab in tables:
if tab is not None:
for name, col in tab.columns.items():
try:
tab[name] = ma.masked_invalid(col)
tab[name] = ma.masked_equal(col, -9999)
except Exception:
pass
def _read_ext(cls, hdulist, extname, **kwargs):
"""Read an extension from a FITS HDUList."""
try:
if cls == Table:
# use Table.read method to ensure extra header keywords are loaded
# as metadata
obj = Table.read(hdulist, hdu=extname)
obj = Table(obj, **kwargs)
else:
obj = cls(hdulist[extname].data, **kwargs)
except Exception as e:
raise IOError('%s: Impossible to open extension %s as a %s\n%s' % (
os.path.basename(hdulist.filename()), extname, cls.__name__, e))
return obj
def _read_mpdaf_obj(cls, hdulist, ext, **kwargs):
"""Read an extension from a FITS HDUList and return an MPDAF object."""
filename = hdulist.filename()
try:
obj = cls(filename=filename, hdulist=hdulist, ext=ext, **kwargs)
except Exception as e:
raise IOError('%s: Impossible to open extension %s as a %s\n%s' % (
os.path.basename(filename), ext, cls.__name__, e))
return obj
def _read_table(hdulist, extname, **kwargs):
"""Read a masked Table from a FITS HDUList."""
t = _read_ext(Table, hdulist, extname, **kwargs)
h = hdulist[extname].header
for i in range(h['TFIELDS']):
try:
t.columns[i].unit = h['TUNIT%d' % (i + 1)]
except Exception:
pass
return t
def _remove_hdu(hdulist, name):
try:
del hdulist[name]
except KeyError:
pass
def _insert_or_update_hdu(hdulist, name, hdu):
try:
idx = hdulist.index_of(name)
hdulist[idx] = hdu
except KeyError:
hdulist.append(hdu)
def _write_mpdaf_obj(obj, type_, name, hdulist):
ext_name = '{}_{}_DATA'.format(type_, name)
savemask = 'nan' if obj.data.dtype.kind == 'f' else 'dq'
datahdu = obj.get_data_hdu(name=ext_name, savemask=savemask)
_insert_or_update_hdu(hdulist, ext_name, datahdu)
ext_name = '{}_{}_STAT'.format(type_, name)
hdu = obj.get_stat_hdu(name=ext_name, header=datahdu.header)
if hdu is not None:
_insert_or_update_hdu(hdulist, ext_name, hdu)
if savemask == 'dq':
ext_name = '{}_{}_DQ'.format(type_, name)
hdu = obj.get_dq_hdu(name=ext_name, header=datahdu.header)
if hdu is not None:
_insert_or_update_hdu(hdulist, ext_name, hdu)
def _write_table(table, name, hdulist):
if table is None:
return
hdu = pyfits.table_to_hdu(table)
hdu.name = name
_insert_or_update_hdu(hdulist, name, hdu)
_INIT_FUNCS = {
'TAB': partial(_read_table, masked=True),
'SPE': partial(_read_mpdaf_obj, Spectrum),
'IMA': partial(_read_mpdaf_obj, Image),
'CUB': partial(_read_mpdaf_obj, Cube)
}
_ATTRIBUTES_TO_EXTNAME = {
'tables': 'TAB',
'spectra': 'SPE',
'images': 'IMA',
'cubes': 'CUB'
}
_EXTNAME_TO_ATTRIBUTES = {v: k for k, v in _ATTRIBUTES_TO_EXTNAME.items()}
class ExtLoader(collections.abc.MutableMapping):
"""Handles loading of FITS extensions.
To avoid loading all the extensions of a source FITS file, this class
allows one to load an extension only when the corresponding object is used.
"""
delayed_types = (str, tuple)
def __init__(self, type_, filename=None, data=None):
self.data = {}
self.loaded_ext = set()
self.deleted_ext = set()
self.filename = filename
self.type = type_
if data is not None:
self.data.update(data)
def isloaded(self, key):
return key in self.loaded_ext
def __repr__(self):
keys = self.data.keys()
return "{} {}: {}".format(len(keys), _EXTNAME_TO_ATTRIBUTES[self.type],
" ".join(keys))
def __getitem__(self, key):
value = self.data[key]
if isinstance(value, self.delayed_types):
with pyfits.open(self.filename) as hdulist:
value = _INIT_FUNCS[self.type](hdulist, value)
self.data[key] = value
self.loaded_ext.add(key)
if isinstance(value, Table):
_mask_invalid(value)
return value
def __setitem__(self, key, value):
self.data[key] = value
if not isinstance(value, self.delayed_types):
self.loaded_ext.add(key)
if key in self.deleted_ext:
self.deleted_ext.remove(key)
def __delitem__(self, key):
del self.data[key]
self.deleted_ext.add(key)
if key in self.loaded_ext:
self.loaded_ext.remove(key)
def __iter__(self):
return iter(self.data)
def __len__(self):
return len(self.data)
def _ipython_key_completions_(self):
return self.data.keys()
[docs]
class Source:
"""This class contains a Source object.
Parameters
----------
header : `astropy.io.fits.Header`
FITS header instance.
lines : `astropy.table.Table`
List of lines.
mag : `astropy.table.Table`
List of magnitudes.
z : `astropy.table.Table`
List of redshifts.
spectra : dict
Spectra dictionary, keys give origin of spectra (``'tot'`` for total
spectrum, TBC). Values are `~mpdaf.obj.Spectrum` objects.
images : dict
Images dictionary, keys give filter names (``'MUSE_WHITE'`` for white
image, TBC). Values are `~mpdaf.obj.Image` objects.
cubes : dict
Dictionary containing small data cubes. Keys gives a description
of the cube. Values are `~mpdaf.obj.Cube` objects.
tables : dict
Dictionary containing tables. Keys give a description of each
table. Values are `astropy.table.Table` objects.
mask_invalid : bool
If True (default), iterate on all columns of all tables to mask
invalid values (Inf, NaN, and -9999).
default_size : float
Default size for image extraction, in arcseconds.
"""
def __init__(self, header, lines=None, mag=None, z=None, spectra=None,
images=None, cubes=None, tables=None, mask_invalid=True,
filename=None, default_size=None):
kwargs = locals()
# Check required keywords in the FITS header
for key in ('RA', 'DEC', 'ID', 'CUBE', 'CUBE_V', 'FROM', 'FROM_V'):
if key not in header:
raise ValueError('{} keyword is mandatory to create a Source '
'object'.format(key))
self._logger = logging.getLogger(__name__)
self._filename = filename
self._default_size = default_size
self.header = header
if 'SRC_V' not in self.header.keys():
self.header['SRC_V'] = ''
# Default tables: LINES, MAG, Z
self.lines = lines
self.mag = mag
self.z = z
for key in ('spectra', 'images', 'cubes', 'tables'):
attr = kwargs[key]
type_ = _ATTRIBUTES_TO_EXTNAME[key]
if attr is None:
setattr(self, key, ExtLoader(type_, filename=filename))
elif isinstance(attr, ExtLoader):
setattr(self, key, attr)
else:
setattr(self, key, ExtLoader(type_, data=attr))
if mask_invalid:
self.masked_invalid()
def __getstate__(self):
state = self.__dict__.copy()
# remove un-pickable objects
state['_logger'] = None
return state
def __setstate__(self, state):
for slot, value in state.items():
setattr(self, slot, value)
self._logger = logging.getLogger(__name__)
def __dir__(self):
return list(self.header.keys()) + super(Source, self).__dir__()
[docs]
@classmethod
def from_data(cls, ID, ra, dec, origin, proba=None, confid=None,
extras=None, **kwargs):
"""Source constructor from a list of data.
Additional parameters are passed to the `Source` constructor.
Parameters
----------
ID : int
ID of the source
ra : double
Right ascension in degrees
dec : double
Declination in degrees
origin : tuple (str, str, str, str)
1- Name of the detector software which creates this object
2- Version of the detector software which creates this object
3- Name of the FITS data cube from which this object has been
extracted.
4- Version of the FITS data cube
proba : float
Detection probability
confid : int
Expert confidence index
extras : dict{key: value} or dict{key: (value, comment)}
Extra header keywords
"""
header = pyfits.Header()
header['ID'] = (ID, 'object ID %d')
header['RA'] = (ra, 'RA u.degree %.7f')
header['DEC'] = (dec, 'DEC u.degree %.7f')
header['FROM'] = (origin[0], 'detection software')
header['FROM_V'] = (origin[1], 'version of the detection software')
header['CUBE'] = (os.path.basename(origin[2]), 'datacube')
header['CUBE_V'] = (origin[3], 'version of the datacube')
if proba is not None:
header['DPROBA'] = (proba, 'Detection probability')
if confid is not None:
header['CONFID'] = (confid, 'Confidence index')
if extras is not None:
header.update(extras)
return cls(header, filename=None, **kwargs)
[docs]
@classmethod
def from_file(cls, filename, ext=None, mask_invalid=True):
"""Source constructor from a FITS file.
Parameters
----------
filename : str
FITS filename
ext : str or list of str
Names of the FITS extensions that will be loaded in the source
object. Regular expression accepted.
mask_invalid : bool
If True (default), iterate on all columns of all tables to mask
invalid values (Inf, NaN, and -9999).
"""
hdulist = pyfits.open(filename)
hdr = hdulist[0].header
_headercorrected(hdr)
spectra = ExtLoader('SPE', filename=filename)
images = ExtLoader('IMA', filename=filename)
cubes = ExtLoader('CUB', filename=filename)
tables = ExtLoader('TAB', filename=filename)
lines = mag = z = None
logger = logging.getLogger(__name__)
if ext is None:
extnames = [h.name for h in hdulist[1:]]
elif isinstance(ext, str):
extnames = [h.name for h in hdulist[1:] if re.findall(ext, h.name)]
else:
extnames = [h.name for e in ext
for h in hdulist[1:] if re.findall(e, h.name)]
if 'LINES' in extnames:
lines = _read_table(hdulist, 'LINES', masked=True)
for name in lines.colnames:
if 'LBDA' in name or 'EQW' in name:
lines[name].format = '.2f'
if 'FLUX' in name or 'FWHM' in name:
lines[name].format = '.1f'
if 'MAG' in extnames:
mag = _read_table(hdulist, 'MAG', masked=True)
_set_table_attributes('MAG', mag)
if 'Z' in extnames:
z = _read_table(hdulist, 'Z', masked=True)
_set_table_attributes('Z', z)
if 'Z_ERR' in z.colnames:
# Compatibility with old versions
z['Z_ERR'].format = '.4f'
z['Z_ERR'].description = 'Error of estimated redshift'
for i, hdu in enumerate(hdulist[1:]):
try:
extname = hdu.name
if not extname:
raise IOError('%s: Extension %d without EXTNAME' % (
os.path.basename(filename), i))
if extname in extnames:
start = extname[:3]
end = extname[-4:]
if end == 'STAT':
continue
elif end == 'DATA':
name = extname[4:-5]
stat_ext = '%s_%s_STAT' % (start, name)
ext = [extname]
if stat_ext in hdulist:
ext.append(stat_ext)
dq_ext = '%s_%s_dq' % (start, name)
if dq_ext in hdulist:
ext.append(dq_ext)
if len(ext) == 1:
ext = ext[0]
else:
ext = tuple(ext)
if start == 'SPE':
spectra[name] = ext
elif start == 'IMA':
images[name] = ext
elif start == 'CUB':
cubes[name] = ext
elif start == 'TAB':
tables[extname[4:]] = extname
except Exception as e:
logger.warning(e)
hdulist.close()
if 'CUBE_V' not in hdr:
logger.warning('CUBE_V keyword in missing. It will be soon '
'mandatory and its absence will return an error')
hdr['CUBE_V'] = ('', 'datacube version')
return cls(hdr, lines, mag, z, spectra, images, cubes, tables,
mask_invalid=mask_invalid,
filename=os.path.abspath(filename))
@property
def default_size(self):
"""Default size image extraction, in arcseconds.
If not set, the size from the white-light image (MUSE_WHITE) is used.
"""
if self._default_size is None:
try:
im = self.images['MUSE_WHITE']
except KeyError:
raise ValueError('Size of the image is required')
else:
self._default_size = (im.shape[0] *
im.wcs.get_step(unit=u.arcsec)[0])
return self._default_size
@default_size.setter
def default_size(self, size):
self._default_size = size
[docs]
def write(self, filename, overwrite=True):
"""Write the source object in a FITS file.
Parameters
----------
filename : str
FITS filename
overwrite : bool
If ``True``, overwrite the output file if it exists.
"""
if not overwrite and os.path.exists(filename):
raise OSError("File '%s' already exists." % filename)
if self._filename is None:
# create and write the FITS file from scratch
prihdu = pyfits.PrimaryHDU(header=self.header)
prihdu.header['DATE'] = (str(datetime.datetime.now()),
'Creation date')
prihdu.header['AUTHOR'] = ('MPDAF', 'Origin of the file')
prihdu.header['FORMAT'] = (TABLES_SCHEMA['version'],
'Version of the Source format')
hdulist = pyfits.HDUList([prihdu])
_write_table(self.lines, 'LINES', hdulist)
_write_table(self.mag, 'MAG', hdulist)
_write_table(self.z, 'Z', hdulist)
for typ in ('spectra', 'images', 'cubes'):
for key, obj in getattr(self, typ).items():
_write_mpdaf_obj(obj, _ATTRIBUTES_TO_EXTNAME[typ], key,
hdulist)
# tables
for key, tab in self.tables.items():
_write_table(tab, 'TAB_%s' % key, hdulist)
# save to disk
hdulist.writeto(filename, overwrite=True, output_verify='fix')
else:
# update the existing FITS file
if os.path.abspath(filename) != self._filename:
shutil.copy(self._filename, filename)
with pyfits.open(filename, mode='update') as hdulist:
hdulist[0].header = self.header
_write_table(self.lines, 'LINES', hdulist)
_write_table(self.mag, 'MAG', hdulist)
_write_table(self.z, 'Z', hdulist)
for typ in ('spectra', 'images', 'cubes'):
obj = getattr(self, typ)
extname = _ATTRIBUTES_TO_EXTNAME[typ]
for key in obj.loaded_ext:
_write_mpdaf_obj(obj[key], extname, key, hdulist)
for key in obj.deleted_ext:
_remove_hdu(hdulist, '{}_{}_DATA'.format(extname, key))
_remove_hdu(hdulist, '{}_{}_STAT'.format(extname, key))
# tables
for key in self.tables.loaded_ext:
_write_table(self.tables[key], 'TAB_%s' % key, hdulist)
for key in self.tables.deleted_ext:
_remove_hdu(hdulist, 'TAB_%s' % key)
hdulist.flush()
[docs]
def info(self):
"""Print information."""
info = self._logger.info
excluded_cards = {'SIMPLE', 'BITPIX', 'NAXIS', 'EXTEND', 'DATE',
'AUTHOR'}
for card in self.header.cards:
if card.keyword not in excluded_cards:
info(card)
for attr in (self.spectra, self.images, self.cubes, self.tables):
info(repr(attr))
for name, tab in (('lines', self.lines), ('magnitudes', self.mag),
('redshifts', self.z)):
if tab is not None:
info("%d %s" % (len(tab), name))
def __getattr__(self, item):
"""Map values to attributes."""
try:
return self.header[item]
except KeyError:
raise AttributeError(item)
def __setattr__(self, item, value):
"""Map attributes to values."""
if item in ('header', 'lines', 'mag', 'z', 'cubes', 'images',
'spectra', 'tables', '_logger', '_filename',
'_default_size', 'default_size'):
super(Source, self).__setattr__(item, value)
else:
self.header[item] = value
[docs]
def add_history(self, text, author='', date=None):
"""Add a history to the FITS header of the Source object.
Parameters
----------
text : str
History text.
author : str
Initials of the author.
date : datetime.date
Date, by default the current local date is used.
"""
date = date or datetime.date.today()
version = self.header['SRC_V']
ttext = '[%s] %s (%s %s)' % (version, text, author, str(date))
if len(ttext) > 68:
n = len(text) - len(ttext) + 68
ttext = '[%s] %s (%s %s)' % (version, text[:n], author, str(date))
self.header['HISTORY'] = ttext
[docs]
def add_attr(self, key, value, desc=None, unit=None, fmt=None):
"""Add a new attribute for the current Source object. This attribute
will be saved as a keyword in the primary FITS header. This method
could also be used to update a simple Source attribute that is saved in
the pyfits header.
Equivalent to ``self.key = (value, comment)``.
Parameters
----------
key : str
Attribute name
value : int/float/str
Attribute value
desc : str
Attribute description
unit : `astropy.units.Unit`
Attribute units
fmt : str
Attribute format ('.2f' for example)
"""
if desc is None:
desc = ''
if unit is not None:
desc += ' u.%s' % (unit.to_string('fits'))
if fmt is not None:
desc += ' %%%s' % fmt
self.header[key] = (value, desc)
[docs]
def remove_attr(self, key):
"""Remove an Source attribute from the FITS header of the Source
object."""
del self.header[key]
[docs]
def add_z(self, desc, z, errz=0):
"""Add a redshift value to the z table.
Parameters
----------
desc : str
Redshift description.
z : float
Redshidt value.
errz : float or (float,float)
Redshift error (deltaz) or redshift interval (zmin,zmax).
"""
if np.isscalar(errz):
if errz == -9999:
zmin = -9999
zmax = -9999
else:
zmin = z - errz / 2
zmax = z + errz / 2
else:
try:
zmin, zmax = errz
except Exception:
raise ValueError('Wrong type for errz in add_z')
if self.z is None:
if z != -9999:
names = ('Z_DESC', 'Z', 'Z_MIN', 'Z_MAX')
dtypes = [TABLES_SCHEMA['Z'][name]['dtype'] for name in names]
self.z = Table(names=names, rows=[[desc, z, zmin, zmax]],
dtype=dtypes, masked=True)
_set_table_attributes('Z', self.z)
else:
if desc in self.z['Z_DESC']:
sel = self.z['Z_DESC'] == desc
if z != -9999:
self.z['Z'][sel] = z
self.z['Z_MIN'][sel] = zmin
self.z['Z_MAX'][sel] = zmax
else:
index = np.where(sel)[0][0]
self.z.remove_row(index)
else:
if z != -9999:
self.z.add_row([desc, z, zmin, zmax])
if self.z is not None:
self.z['Z'] = ma.masked_equal(self.z['Z'], -9999)
self.z['Z_MIN'] = ma.masked_equal(self.z['Z_MIN'], -9999)
self.z['Z_MAX'] = ma.masked_equal(self.z['Z_MAX'], -9999)
[docs]
def add_mag(self, band, m, errm):
"""Add a magnitude value to the mag table.
Parameters
----------
band : str
Filter name.
m : float
Magnitude value.
errm : float
Magnitude error.
"""
if self.mag is None:
names = ['BAND', 'MAG', 'MAG_ERR']
dtypes = [TABLES_SCHEMA['MAG'][name]['dtype'] for name in names]
self.mag = Table(names=names, rows=[[band, m, errm]],
dtype=dtypes, masked=True)
_set_table_attributes('MAG', self.mag)
else:
if band in self.mag['BAND']:
self.mag['MAG'][self.mag['BAND'] == band] = m
self.mag['MAG_ERR'][self.mag['BAND'] == band] = errm
else:
self.mag.add_row([band, m, errm])
[docs]
def add_line(self, cols, values, units=None, desc=None, fmt=None,
match=None):
"""Add a line to the lines table.
Parameters
----------
cols : list of str
Names of the columns
values : list<int/float/str>
List of corresponding values
units : list<astropy.units>
Unit of each column
desc : list of str
Description of each column
fmt : list of str
Format of each column.
match : (str, float/int/str, bool)
Tuple (key, value, False/True) that gives the key to match the
added line with an existing line. eg ('LINE','LYALPHA1216', True)
If the boolean is True, the line will be added even if it is not
matched.
"""
if self.lines is None:
types = []
for val in values:
if is_int(val):
types.append('<i4')
elif is_float(val):
types.append('<f8')
else:
types.append(STR_DTYPE)
self.lines = Table(rows=[values], names=cols, dtype=types,
masked=True)
if units is not None:
for colname, unit in zip(self.lines.colnames, units):
self.lines[colname].unit = unit
if desc is not None:
for colname, d in zip(self.lines.colnames, desc):
self.lines[colname].description = d
if fmt is not None:
for colname, f in zip(self.lines.colnames, fmt):
self.lines[colname].format = f
else:
# add new columns
if units is None:
units = [None] * len(cols)
if desc is None:
desc = [None] * len(cols)
if fmt is None:
fmt = [None] * len(cols)
for col, val, unit, d, f in zip(cols, values, units, desc, fmt):
if col not in self.lines.colnames:
nlines = len(self.lines)
if is_int(val):
typ = '<i4'
elif is_float(val):
typ = '<f8'
else:
typ = STR_DTYPE
col = MaskedColumn(ma.masked_array(np.empty(nlines),
mask=np.ones(nlines)),
name=col, dtype=typ, unit=unit,
description=d, format=f)
self.lines.add_column(col)
if match is not None:
if len(match) == 2:
matchkey, matchval = match
add_if_not_matched = False
else:
matchkey, matchval, add_if_not_matched = match
if match is not None and matchkey in self.lines.colnames:
l = np.argwhere(self.lines[matchkey] == matchval)
if len(l) > 0:
for col, val, unit in zip(cols, values, units):
if unit is None or unit == self.lines[col].unit:
self.lines[col][l] = val
else:
self.lines[col][l] = (val * unit).to(
self.lines[col].unit).value
return
else:
if not add_if_not_matched:
return
# add new row
ncol = len(self.lines.colnames)
row = [None] * ncol
mask = np.ones(ncol)
for col, val, unit in zip(cols, values, units):
i = self.lines.colnames.index(col)
if unit is None or unit == self.lines[col].unit:
row[i] = val
else:
row[i] = (val * unit).to(self.lines[col].unit).value
mask[i] = 0
self.lines.add_row(row, mask=mask)
[docs]
def add_image(self, image, name, size=None, minsize=2.0,
unit_size=u.arcsec, rotate=False, order=1):
"""Extract an image centered on the source center from the input
image and append it to the images dictionary.
Extracted image saved in ``self.images[name]``.
Parameters
----------
image : `~mpdaf.obj.Image`
Input image MPDAF object.
name : str
Name used to distinguish this image
size : float
The size to extract. It corresponds to the size along the delta
axis and the image is square. If None, the size of the white image
extension is taken if it exists.
unit_size : `astropy.units.Unit`
Unit of ``size`` and ``minsize``. Arcseconds by default
(use None for size in pixels).
minsize : float
The minimum size of the output image.
rotate : bool
if True, the image is rotated to the same PA as the white-light
image.
order : int
The order of the prefilter that is applied by the affine
transform function for the rotation.
"""
if size is None:
size = self.default_size
if unit_size is None:
minsize *= image.wcs.get_step(unit=u.arcsec)[0]
elif unit_size != u.arcsec:
minsize = (minsize * unit_size).to(u.arcsec).value
unit_size = u.arcsec
center = (self.dec, self.ra)
kwargs = dict(minsize=minsize, unit_center=u.deg, unit_size=unit_size)
if rotate:
try:
white_ima = self.images['MUSE_WHITE']
except KeyError:
raise ValueError('MUSE_WHITE image is required to get the '
'rotation angle')
pa_white = white_ima.get_rot()
pa = image.get_rot()
if np.abs(pa_white - pa) > 1.e-3:
image = image.subimage(center, size * 1.5, **kwargs)
uniq = np.unique(image.data.data)
if ((uniq == 0) | (uniq == 1)).all():
image = image.rotate(pa_white - pa, order=0)
else:
image = image.rotate(pa_white - pa, order=order)
try:
subima = image.subimage(center, size, **kwargs)
except Exception:
self._logger.warning('Image %s not added. Source outside or at the'
' edges', name)
else:
self.images[name] = subima
[docs]
def add_cube(self, cube, name, size=None, lbda=None, add_white=False,
unit_size=u.arcsec, unit_wave=u.angstrom):
"""Extract a cube centered on the source center and append it to the
cubes dictionary.
Extracted cube saved in ``self.cubes[name]``.
Parameters
----------
cube : `~mpdaf.obj.Cube`
Input cube MPDAF object.
name : str
Name used to distinguish this cube
size : float
The size to extract. It corresponds to the size along the delta
axis and the image is square. If None, the size of the white image
extension is taken if it exists.
lbda : (float, float) or None
If not None, tuple giving the wavelength range.
add_white : bool
Add white image from the extracted cube.
unit_size : `astropy.units.Unit`
Unit of the size value (arcseconds by default). If None, size is
in pixels.
unit_wave : `astropy.units.Unit`
Wavelengths unit (angstrom by default). If None, inputs are in
pixels.
"""
if size is None:
size = self.default_size
unit_size = u.arcsec
subcub = cube.subcube(center=(self.dec, self.ra), size=size,
unit_center=u.deg, unit_size=unit_size)
if add_white:
self.images['MUSE_WHITE'] = subcub.mean(axis=0)
if lbda is not None:
subcub = subcub.select_lambda(lbda[0], lbda_max=lbda[1],
unit_wave=unit_wave)
self.cubes[name] = subcub
[docs]
def add_white_image(self, cube, size=5, unit_size=u.arcsec):
"""Compute the white images from the MUSE data cube and appends it to
the images dictionary.
White image saved in self.images['MUSE_WHITE'].
Parameters
----------
cube : `~mpdaf.obj.Cube`
MUSE data cube.
size : float
The total size to extract in arcseconds.
It corresponds to the size along the delta axis and the image is
square. By default 5x5arcsec
unit_size : `astropy.units.Unit`
unit of the size value (arcseconds by default)
If None, size is in pixels
"""
if (self._default_size is not None and size is not None and
self._default_size != size):
raise ValueError('size does not match the default one')
subcub = cube.subcube(center=(self.dec, self.ra), size=size,
unit_center=u.deg, unit_size=unit_size)
self.images['MUSE_WHITE'] = subcub.mean(axis=0)
[docs]
def add_FSF(self, cube, fieldmap=None):
"""Add FSF keywords from the cube FSF keywords.
For mosaic, when multiple fields are mixed with different FSF, the mean
FSF is computed using a fieldmap.
The cube header must contain the FSFMODE keyword, and currently only
the MOFFAT1 mode is handled. If there are multiple fields (keyword
NFIELDS>1), then a fieldmap is required. It can be found either in
a FIELDMAP extension in the cube file, or provided with the
``fieldmap`` parameter. Then the keywords ``FSFxxBET``, ``FSFxxFWA``,
and ``FSFxxFWB`` where xx is the field index (00 for one field), are
used to get the Moffat parameters, and are written in the source
header.
Parameters
----------
cube : `~mpdaf.obj.Cube`
Input cube MPDAF object.
fieldmap : str
Name for the FITS file containing the field map. The field map
must be on the same WCS as the cube. If None, the field map is
taken from the FIELDMAP extension in the cube file.
"""
fsfmodel = FSFModel.read(cube)
if (fsfmodel.model != "MOFFAT1") and (fsfmodel.model != 2):
raise ValueError('This method is coded only for FSFMODE=2')
if isinstance(fsfmodel, FSFModel): # just one FSF
self.header.update(fsfmodel.to_header(field_idx=0))
else:
# load field map, from a dedicated file or from the cube
fmap = (FieldsMap(fieldmap) if fieldmap is not None
else FieldsMap(cube.filename, extname='FIELDMAP'))
# load info from the white image
try:
white = self.images['MUSE_WHITE']
except KeyError:
raise ValueError('Cannot compute FSF if the MUSE_WHITE image '
'does not exist.')
center = cube.wcs.sky2pix((self.dec, self.ra), unit=u.deg)[0]
radius = int(white.shape[0] + 0.5) / 2.
(sy, sx), (uy, ux), _ = bounding_box(
form="rectangle", center=center, radii=radius,
shape=cube.shape[1:])
# compute corresponding sub field map
subfmap = fmap[sy, sx]
# check if submap has been trimmed, when source is on the edge.
# if this is the case, we need to extract the same part of the
# white image
if uy != sy or ux != sx:
slices = (slice(sy.start - uy.start, sy.stop - uy.start),
slice(sx.start - ux.start, sx.stop - ux.start))
white_data = white._data[slices]
else:
white_data = white._data
# weights
w = np.array(subfmap.compute_weights())
w *= white_data[np.newaxis, :, :]
w = np.ma.sum(np.ma.masked_invalid(w), axis=(1, 2))
w /= np.ma.sum(np.ma.masked_invalid(w))
w = w.data
# FSF
ksel = np.where(w != 0)
if len(ksel[0]) == 1: # only one field
idx = ksel[0][0]
self.header.update(fsfmodel[idx].to_header(field_idx=idx + 1))
else: # several fields
fwhmdeg = max([len(fsfmodel[i].fwhm_pol) for i in ksel[0]]) - 1
betadeg = max([len(fsfmodel[i].beta_pol) for i in ksel[0]]) - 1
maxorder = max(fwhmdeg, betadeg)
nwaves = max(2, maxorder * 5)
lbrange = cube.wave.get_range()
waves = np.linspace(lbrange[0], lbrange[1], nwaves)
# compute FSF for all wavelengths
imalist = []
for lbda in waves:
FSF = 0
for i in ksel[0]:
FSF += w[i] * fsfmodel[i].get_image(lbda, cube.wcs)
imalist.append(FSF)
beta0 = fsfmodel[np.argmax(w)].get_beta(
(lbrange[0] + lbrange[1]) / 2)
fwhm0 = fsfmodel[np.argmax(w)].get_fwhm(
(lbrange[0] + lbrange[1]) / 2)
model = MoffatModel2.from_FSFlist(imalist, waves, fwhm0, beta0,
fwhmdeg, betadeg, lbrange)
self.header.update(model.to_header(field_idx=99))
[docs]
def get_FSF(self):
"""Return the FSF model if available in the FITS header."""
try:
white = self.images['MUSE_WHITE']
pixstep = white.wcs.get_step(unit=u.arcsec)[0]
except Exception:
pixstep = None
try:
fsfmodel = FSFModel.read(self.header, pixstep=pixstep)
return fsfmodel
except ValueError:
# no model found
return
[docs]
def add_narrow_band_images(self, cube, z_desc, eml=None, size=None,
unit_size=u.arcsec, width=8, is_sum=False,
subtract_off=True, margin=10., fband=3.,
median_filter=0,
method="mean"):
"""Create narrow-band images from a redshift value and a catalog of
lines.
Algorithm from Jarle Brinchmann (jarle@strw.leidenuniv.nl)
Narrow-band images are saved in ``self.images['NB_']``.
Parameters
----------
cube : `~mpdaf.obj.Cube`
MUSE data cube.
z_desc : str
Redshift description. The redshift value corresponding to
this description will be used.
eml : dict{float: str}
Full catalog of lines
Dictionary: key is the wavelength value in Angstrom,
value is the name of the line.
if None, the following catalog is used::
eml = {1216 : 'LYALPHA', 1908: 'SUMCIII1907',
3727: 'SUMOII3726', 4863: 'HBETA' ,
5007: 'OIII5007', 6564: 'HALPHA'}
size : float
The total size to extract. It corresponds to the size along the
delta axis and the image is square. If None, the size of the white
image extension is taken if it exists.
unit_size : `astropy.units.Unit`
unit of the size value (arcseconds by default)
If None, size is in pixels
width : float
Narrow-band width(in angstrom).
is_sum : bool
if True the image is computed as the sum over the wavelength axis,
otherwise this is the average. Deprecated, use "sum" as aggregation
method.
subtract_off : bool
If True, subtracting off nearby data.
The method computes the subtracted flux by using the algorithm
from Jarle Brinchmann (jarle@strw.leidenuniv.nl)::
# if method = "mean"
sub_flux = mean(flux[lbda1-margin-fband*(lbda2-lbda1)/2: lbda1-margin] +
flux[lbda2+margin: lbda2+margin+fband*(lbda2-lbda1)/2])
# or if method = "sum":
sub_flux = sum(flux[lbda1-margin-fband*(lbda2-lbda1)/2: lbda1-margin] +
flux[lbda2+margin: lbda2+margin+fband*(lbda2-lbda1)/2]) /fband
# or if median_filter > 0:
sub_flux = median_filter in the wavelength axis of flux
margin : float
This off-band is offseted by margin wrt narrow-band limit (in
angstrom).
fband : float
The size of the off-band is ``fband x narrow-band width`` (in
angstrom).
median_filter : float
size of the median filter for background estimation (if set to 0,
the classical off band images are used )
method : str
Name of the Cube method used to aggregate the data. This method
must accept the axis=0 parameter and return an image. Example:
mean, sum, max.
"""
if is_sum:
warnings.warn(
"The 'is_sum' parameter is deprecated. Use method='sum' "
"instead. Aggregation function set to sum.", MpdafWarning)
method = "sum"
if self.z is None:
self._logger.warning('Cannot generate narrow-band image if the '
'redshift is None.')
return
if size is None:
size = self.default_size
unit_size = u.arcsec
subcub = cube.subcube(center=(self.dec, self.ra), size=size,
unit_center=u.deg, unit_size=unit_size)
z = self.z['Z'][self.z['Z_DESC'] == z_desc]
if z > 0:
if eml is None:
all_lines = np.array([1216, 1908, 3727, 4863, 5007, 6564])
all_tags = np.array(['LYALPHA', 'SUMCIII1907', 'SUMOII3726',
'HBETA', 'OIII5007', 'HALPHA'])
else:
all_lines = np.array(list(eml.keys()))
all_tags = np.array(list(eml.values()))
minl, maxl = subcub.wave.get_range(unit=u.angstrom) / (1 + z)
useful = np.where((all_lines > minl) & (all_lines < maxl))
nlines = len(useful[0])
if nlines > 0:
lambda_ranges = np.empty((2, nlines))
lambda_ranges[0, :] = (1 + z) * all_lines[useful] - width / 2.0
lambda_ranges[1, :] = (1 + z) * all_lines[useful] + width / 2.0
tags = all_tags[useful]
for l1, l2, tag in zip(lambda_ranges[0, :],
lambda_ranges[1, :], tags):
# self._logger.debug('Generate narrow band image for NB_%s'
# ' with z=%s', tag, z[0])
self.images['NB_' + tag] = subcub.get_image(
wave=(l1, l2), method=method,
subtract_off=subtract_off, margin=margin,
fband=fband, median_filter=median_filter, unit_wave=u.angstrom)
[docs]
def add_narrow_band_image_lbdaobs(self, cube, tag, lbda, size=None,
unit_size=u.arcsec, width=8,
is_sum=False, subtract_off=True,
margin=10., fband=3., median_filter=0, method="mean"):
"""Create narrow-band image around an observed wavelength value.
Parameters
----------
cube : `~mpdaf.obj.Cube`
MUSE data cube.
tag : str
key used to identify the new narrow-band image in the images
dictionary.
lbda : float
Observed wavelength value in angstrom.
size : float
The total size to extract in arcseconds. It corresponds to the size
along the delta axis and the image is square. If None, the size of
the white image extension is taken if it exists.
unit_size : `astropy.units.Unit`
unit of the size value (arcseconds by default)
If None, size is in pixels
width : float
Angstrom total width
is_sum : bool
if True the image is computed as the sum over the wavelength axis,
otherwise this is the average. Deprecated, use "sum" as aggregation
method.
subtract_off : bool
If True, subtracting off nearby data.
margin : float
This off-band is offseted by margin wrt narrow-band limit (in
angstrom).
fband : float
The size of the off-band is fband*narrow-band width (in angstrom).
method : str
Name of the Cube method used to aggregate the data. This method
must accept the axis=0 parameter and return an image. Example:
mean, sum, max.
"""
if is_sum:
warnings.warn(
"The 'is_sum' parameter is deprecated. Use method='sum' "
"instead. Aggregation function set to sum.", MpdafWarning)
method = "sum"
if size is None:
size = self.default_size
unit_size = u.arcsec
l1 = lbda - width / 2.0
l2 = lbda + width / 2.0
subcub = cube.subcube(center=(self.dec, self.ra), size=size,
unit_center=u.deg, unit_size=unit_size)
self.images[tag] = subcub.get_image(wave=(l1, l2),
method=method,
subtract_off=subtract_off,
margin=margin, fband=fband,
median_filter=median_filter,
unit_wave=u.angstrom)
[docs]
def add_seg_images(self, tags=None, DIR=None, del_sex=True,
save_seg_table=False, outdir='./', debug=False,):
"""Run SExtractor on all images to create segmentation maps.
SExtractor will use the ``default.nnw``, ``default.param``,
``default.sex`` and ``*.conv`` files present in the current directory.
If not present default parameter files are created or copied from the
directory given in input (DIR).
Algorithm from Jarle Brinchmann (jarle@strw.leidenuniv.nl)
Parameters
----------
tags : list of str
List of tags of selected images
DIR : str
Directory that contains the configuration files of sextractor
del_sex : bool
If False, configuration files of sextractor are not removed.
save_seg_table : bool
If True, segmentation table are saved in the source tables dict
outdir : str
Name of directory where temporary files are copied and SExtractor run
if None, a temporary directory with a unique name is created and deleted at the end
debug : bool
if True, the output of SExtractor is logged as DEBUG and the created and temporary directory files are not deleted
"""
if 'MUSE_WHITE' in self.images:
if tags is None:
tags = [tag for tag in self.images
if tag[0:4] != 'SEG_' and 'MASK' not in tag]
segmentation(self, tags, DIR, del_sex, debug=debug, save_seg_table=save_seg_table, outdir=outdir)
else:
self._logger.warning('add_seg_images method use the MUSE_WHITE '
'image computed by add_white_image method')
[docs]
def find_sky_mask(self, seg_tags, sky_mask='MASK_SKY'):
"""Loop over all segmentation images and use the region where no object
is detected in any segmentation map as our sky image.
Algorithm from Jarle Brinchmann (jarle@strw.leidenuniv.nl)
Parameters
----------
seg_tags : list of str
List of tags of selected segmentation images.
sky_mask : str
Name of the sky mask image.
"""
shape = self.images[seg_tags[0]].shape
wcs = self.images[seg_tags[0]].wcs
mask = np.ones(shape, dtype=bool)
for key in seg_tags:
im = self.images[key]
if im.shape == shape:
mask &= (~np.asarray(im.data, dtype=bool))
else:
raise IOError('segmentation maps have not the same dimensions')
self.images[sky_mask] = Image(wcs=wcs, dtype=np.uint8, copy=False,
data=mask)
[docs]
def find_union_mask(self, seg_tags, union_mask='MASK_UNION'):
"""Use the list of segmentation maps to compute the union mask.
Algorithm from Jarle Brinchmann (jarle@strw.leidenuniv.nl):
1- Select on each segmentation map the object at the centre of the map.
(the algo supposes that each objects have different labels)
2- compute the union of these selected objects
Parameters
----------
tags : list of str
List of tags of selected segmentation images
union_mask : str
Name of the union mask image.
"""
wcs = self.images['MUSE_WHITE'].wcs
yc, xc = wcs.sky2pix((self.DEC, self.RA), unit=u.deg)[0]
maps = {}
for tag in seg_tags:
if tag[:4] == 'SEG_':
maps[tag[4:]] = self.images[tag].data.data
else:
maps[tag] = self.images[tag].data.data
r = findCentralDetection(maps, yc, xc, tolerance=3)
self.images[union_mask] = Image(wcs=wcs, dtype=np.uint8, copy=False,
data=union(list(r['seg'].values())))
[docs]
def find_intersection_mask(self, seg_tags, inter_mask='MASK_INTER'):
"""Use the list of segmentation maps to compute the instersection mask.
Algorithm from Jarle Brinchmann (jarle@strw.leidenuniv.nl):
1- Select on each segmentation map the object at the centre of the map.
(the algo supposes that each objects have different labels)
2- compute the intersection of these selected objects
Parameters
----------
tags : list of str
List of tags of selected segmentation images
inter_mask : str
Name of the intersection mask image.
"""
wcs = self.images['MUSE_WHITE'].wcs
yc, xc = wcs.sky2pix((self.DEC, self.RA), unit=u.deg)[0]
maps = {}
for tag in seg_tags:
if tag[0:4] == 'SEG_':
maps[tag[4:]] = self.images[tag].data.data
else:
maps[tag] = self.images[tag].data.data
r = findCentralDetection(maps, yc, xc, tolerance=3)
self.images[inter_mask] = Image(
wcs=wcs, dtype=np.uint8, copy=False,
data=intersection(list(r['seg'].values()))
)
[docs]
def add_table(self, tab, name, columns=None, select_in=None, margin=0,
ra=None, dec=None, col_dist=None, col_edgedist=None,
digit=3):
"""Append an astropy table to the tables dictionary.
Parameters
----------
tab : `astropy.table.Table` or `mpdaf.sdetect.Catalog`
Input Table object.
name : str
Name used to distinguish this table.
columns : list of str
List of column names to select.
select_in : str
Name of the image (available in the source) to use for the WCS
selection.
margin : int
Margin from the edges (pixels) for the WCS selection.
ra : str
Name of the RA column (degrees) for WCS selection and distance.
dec : str
Name of the DEC column (degrees) for WCS selection and distance.
col_dist : str
Name of the column with the distance to the source in arcsec.
If None distance is not computed. Defaults to DIST.
col_edgedist : str
Name of the column with the distance to the image edges.
If None distance is not computed.
digit : int
Number of digits to round distances, defaults to 3.
"""
if columns:
tab = tab[columns]
if select_in:
wcs = self.images[select_in].wcs
tab = tab.select(wcs, ra=ra, dec=dec, margin=margin)
if len(tab) == 0:
return
if col_dist is not None:
from astropy.coordinates import SkyCoord
scat_coords = tab.to_skycoord(ra=ra, dec=dec)
src_coord = SkyCoord(ra=self.RA, dec=self.DEC,
unit=('deg', 'deg'), frame='fk5')
tab[col_dist] = src_coord.separation(scat_coords).arcsec
if digit is not None:
tab[col_dist] = np.round(tab[col_dist], digit)
tab.sort(col_dist)
if col_edgedist is not None:
tab[col_edgedist] = tab.edgedist(wcs, ra=ra, dec=dec)
if digit is not None:
tab[col_edgedist] = np.round(tab[col_edgedist], digit)
self.tables[name] = tab
# Insert the PSF weighted flux - here re-normalised?
[docs]
def crack_z(self, eml=None, nlines=np.inf, cols=('LBDA_OBS', 'FLUX'),
z_desc='EMI', zguess=None):
"""Estimate the best redshift matching the list of emission lines.
Algorithm from Johan Richard (johan.richard@univ-lyon1.fr).
This method saves the redshift values in ``self.z`` and lists the
detected lines in ``self.lines``. ``self.info()`` could be used to
print the results.
Parameters
----------
eml : dict{float: str}
Full catalog of lines to test redshift
Dictionary: key is the wavelength value in Angtsrom,
value is the name of the line.
if None, the following catalog is used::
emlines = {
1215.67: 'LYALPHA1216' , 1550.0: 'CIV1550' ,
1908.0: 'CIII]1909' , 2326.0: 'CII2326' ,
3726.032: '[OII]3726' , 3728.8149: '[OII]3729' ,
3798.6001: 'HTHETA3799' , 3834.6599: 'HETA3835' ,
3869.0: '[NEIII]3869' , 3888.7: 'HZETA3889' ,
3967.0: '[NEIII]3967' , 4102.0: 'HDELTA4102' ,
4340.0: 'HGAMMA4340' , 4861.3198: 'HBETA4861' ,
4959.0: '[OIII]4959' , 5007.0: '[OIII]5007' ,
6548.0: '[NII6548]' , 6562.7998: 'HALPHA6563' ,
6583.0: '[NII]6583' , 6716.0: '[SII]6716' ,
6731.0: '[SII]6731'
}
nlines : int
estimated the redshift if the number of emission lines is
inferior to this value
cols : (str, str)
tuple (wavelength column name, flux column name)
Two columns of self.lines that will be used to define the emission
lines.
z_desc : str
Estimated redshift will be saved in self.z table under these name.
zguess : float
Guess redshift. Test if this redshift is a match and fills the
detected lines
"""
nline_max = nlines
if eml is None:
eml = emlines
col_lbda, col_flux = cols
if self.lines is None:
raise IOError('invalid self.lines table')
if col_lbda not in self.lines.colnames:
raise IOError('invalid colum name %s' % col_lbda)
if col_flux not in self.lines.colnames:
raise IOError('invalid colum name %s' % col_flux)
try:
# vacuum wavelengths
wl = airtovac(np.array(self.lines[col_lbda]))
flux = np.array(self.lines[col_flux])
nlines = len(wl)
except Exception:
self._logger.info('Impossible to estimate the redshift, no '
'emission lines')
return
z, errz, nlines, wl, flux, lnames = crackz(nlines, wl, flux, eml,
zguess)
# observed wavelengths
wl = vactoair(np.array(wl))
if nlines > 0:
if nlines < nline_max:
# redshift
self.add_z(z_desc, z, errz)
self._logger.info('crack_z: z=%0.6f err_z=%0.6f' % (z, errz))
# line names
if 'LINE' not in self.lines.colnames:
nlines = len(self.lines)
col = MaskedColumn(ma.masked_array(np.array([''] * nlines),
mask=np.ones(nlines)),
name='LINE', dtype=STR_DTYPE,
description='line name')
self.lines.add_column(col)
for w, name in zip(wl, lnames):
self.lines['LINE'][
np.where(abs(self.lines[col_lbda] - w) < 0.01)] = name
self._logger.info('crack_z: lines')
for l in self.lines.pformat():
self._logger.info(l)
else:
self._logger.info('Impossible to estimate the redshift, the '
'number of emission lines is inferior to %d',
nline_max)
else:
self._logger.info('Impossible to estimate the redshift, no '
'emission lines')
[docs]
def sort_lines(self, nlines_max=25):
"""Sort lines by flux in descending order.
Parameters
----------
nlines_max : int
Maximum number of stored lines
"""
if self.lines is not None:
if isinstance(self.lines['LINE'], MaskedColumn):
self.lines['LINE'] = self.lines['LINE'].filled('')
subtab1 = self.lines[self.lines['LINE'] != '']
subtab1.sort('FLUX')
subtab1.reverse()
n1 = len(subtab1)
subtab2 = self.lines[self.lines['LINE'] == '']
subtab2.sort('FLUX')
subtab2.reverse()
n2 = len(subtab2)
if (n1 + n2) > nlines_max:
n2 = max(nlines_max - n1, 0)
self.lines = vstack([subtab1, subtab2[0:n2]])
[docs]
def show_ima(self, ax, name, showcenter=None,
cuts=None, cmap='gray_r', **kwargs):
"""Show image.
Parameters
----------
ax : matplotlib.axes._subplots.AxesSubplot
Matplotlib axis instance (eg ax = fig.add_subplot(2,3,1)).
name : str
Name of image to display.
showcenter : (float, str)
radius in arcsec and color used to plot a circle around the center
of the source.
cuts : (float, float)
Minimum and maximum values to use for the scaling.
cmap : matplotlib.cm
Color map.
kwargs : matplotlib.artist.Artist
kwargs can be used to set additional plotting properties.
"""
if name not in self.images:
raise ValueError('Image %s not found' % name)
zima = self.images[name]
if cuts is None:
vmin = None
vmax = None
else:
vmin, vmax = cuts
if 'title' not in kwargs:
kwargs['title'] = '%s' % (name)
zima.plot(vmin=vmin, vmax=vmax, cmap=cmap, ax=ax, **kwargs)
if showcenter is not None:
from matplotlib.patches import Ellipse
rad, col = showcenter
pix = zima.wcs.sky2pix((self.DEC, self.RA))[0]
rpix = rad / zima.wcs.get_step(unit=u.arcsec)[0]
ell = Ellipse((pix[1], pix[0]), 2 * rpix, 2 * rpix, 0, fill=False)
ax.add_artist(ell)
ell.set_clip_box(ax.bbox)
ell.set_alpha(1)
ell.set_edgecolor(col)
ax.axis('off')
return
[docs]
def show_rgb(self, ax, names, showcenter=None, cuts=None, **kwargs):
"""Show RGB composite image.
Parameters
----------
ax : matplotlib.axes._subplots.AxesSubplot
Matplotlib axis instance (eg ax = fig.add_subplot(2,3,1)).
names : [str, str, str]
List of images corresponding to the blue, green and red filters.
showcenter : (float, str)
radius in arcsec and color used to plot a circle around the center
of the source.
cuts : [(float, float), (float, float), (float, float)]
Minimum and maximum values to use for the scaling corresponding to
the blue, green and red filters.
kwargs : matplotlib.artist.Artist
kwargs can be used to set additional plotting properties.
Returns
-------
ax : matplotlib AxesImage
Matplotlib axis instance.
images_aligned : list of `~mpdaf.obj.Image`
The input images, but all aligned to that with the highest
resolution.
"""
images = []
for im_name in names:
if im_name not in self.images:
raise ValueError('Image %s not found' % im_name)
images.append(self.images[im_name])
if cuts is None:
vmin = [None, None, None]
vmax = [None, None, None]
else:
vmin, vmax = zip(*cuts)
if 'title' not in kwargs:
kwargs['title'] = ' '.join(names)
_, images_aligned = plot_rgb(images, vmin=vmin, vmax=vmax, ax=ax,
**kwargs)
if showcenter is not None:
from matplotlib.patches import Ellipse
rad, col = showcenter
pix = images_aligned[0].wcs.sky2pix((self.DEC, self.RA))[0]
rpix = rad / images_aligned[0].wcs.get_step(unit=u.arcsec)[0]
ell = Ellipse((pix[1], pix[0]), 2 * rpix, 2 * rpix, 0, fill=False)
ax.add_artist(ell)
ell.set_clip_box(ax.bbox)
ell.set_alpha(1)
ell.set_edgecolor(col)
ax.axis('off')
return ax, images_aligned
[docs]
def show_spec(self, ax, name, cuts=None, zero=False, sky=None, lines=None,
**kwargs):
"""Display a spectra.
Parameters
----------
ax : matplotlib.axes._subplots.AxesSubplot
Matplotlib axis instance (eg ax = fig.add_subplot(2,3,1)).
name : str
Name of spectra to display.
cuts : (float, float)
Minimum and maximum values to use for the scaling.
zero : float
If True, the 0 flux line is plotted in black.
sky : `~mpdaf.obj.Spectrum`
Sky spectra to overplot (default None).
lines : str
Name of a columns of the lines table containing wavelength values.
If not None, overplot red vertical lines at the given wavelengths.
kwargs : matplotlib.artist.Artist
kwargs can be used to set additional plotting properties.
"""
spec = self.spectra[name]
spec.plot(ax=ax, **kwargs)
if zero:
ax.axhline(0, color='k')
if cuts is not None:
ax.set_ylim(cuts)
if sky is not None:
ax2 = ax.twinx()
if 'lmin' in kwargs:
sky.plot(ax=ax2, color='k', alpha=0.2, lmin=kwargs['lmin'],
lmax=kwargs['lmax'])
else:
sky.plot(ax=ax2, color='k', alpha=0.2)
ax2.axis('off')
if lines is not None:
wavelist = self.lines[lines]
for lbda in wavelist:
ax.axvline(lbda, color='r')
return
[docs]
def masked_invalid(self, tables=None):
"""Mask where invalid values occur (NaNs or infs or -9999 or '')."""
if tables is None:
tables = ([self.lines, self.mag, self.z] +
[self.tables[key] for key in self.tables.loaded_ext])
_mask_invalid(tables)
[docs]
class SourceList(list):
"""Handles a list of `mpdaf.sdetect.Source` objects."""
source_class = Source
[docs]
def write(self, name, path='.', overwrite=True, fmt='default'):
"""Create the directory and saves all sources files and the catalog
file in this folder.
``path/name.fits``: catalog file
(In FITS table, the maximum number of fields is 999.
In this case, the catalog is saved as an ascci table).
``path/name/nameNNNN.fits``: source file (NNNN corresponds to the ID of
the source)
Parameters
----------
name : str
Name of the catalog
path : str
path where the catalog will be saved.
overwrite : bool
Overwrite the catalog if it already exists
fmt : str, 'working' or 'default'
Format of the catalog. The format differs for the LINES table.
"""
if not os.path.exists(path):
raise ValueError("Invalid path: {}".format(path))
path = os.path.normpath(path)
path2 = os.path.join(path, name)
if not os.path.exists(path2):
os.makedirs(path2)
else:
if overwrite:
shutil.rmtree(path2)
os.makedirs(path2)
for source in self:
source.write('%s/%s-%04d.fits' % (path2, name, source.ID))
fcat = '%s/%s.fits' % (path, name)
if overwrite and os.path.isfile(fcat):
os.remove(fcat)
from .catalog import Catalog
cat = Catalog.from_sources(self, fmt)
try:
cat.write(fcat)
except Exception:
logger = logging.getLogger(__name__)
logger.warning('Failed to write in FITS format, trying txt',
exc_info=True)
cat.write(fcat.replace('.fits', '.txt'), format='ascii')
[docs]
@classmethod
def from_path(cls, path):
"""Read a SourceList object from the path of a directory containing
source files.
Parameters
----------
path : str
Directory containing `mpdaf.sdetect.Source` files
"""
if not os.path.exists(path):
raise ValueError("Invalid path: {}".format(path))
slist = cls()
for f in glob.glob(path + '/*.fits'):
slist.append(cls.source_class.from_file(f))
return slist