Source code for mpdaf.sdetect.source

"""
Copyright (c) 2010-2018 CNRS / Centre de Recherche Astrophysique de Lyon
Copyright (c) 2015-2017 Laure Piqueras <laure.piqueras@univ-lyon1.fr>
Copyright (c) 2015-2019 Johan Richard <jrichard@univ-lyon1.fr>
Copyright (c) 2015-2019 Simon Conseil <simon.conseil@univ-lyon1.fr>
Copyright (c) 2015-2019 Roland Bacon <roland.bacon@univ-lyon1.fr>
Copyright (c)      2016 Martin Shepherd <martin.shepherd@univ-lyon1.fr>
Copyright (c) 2018-2019 David Carton <cartondj@gmail.com>
Copyright (c)      2018 Yannick Roehlly <yannick.roehlly@univ-lyon1.fr>

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
   list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation
   and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
   may be used to endorse or promote products derived from this software
   without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""

import astropy.units as u
import collections.abc
import datetime
import glob
import logging
import numpy as np
import os
import re
import shutil
import warnings

from astropy.io import fits as pyfits
from astropy.table import Table, MaskedColumn, Column, vstack
from functools import partial
from numpy import ma
from scipy.optimize import leastsq

from ..obj import Cube, Image, Spectrum, vactoair, airtovac, plot_rgb
from ..obj.objs import is_int, is_float, bounding_box
from ..tools import MpdafWarning
from ..MUSE import FieldsMap, FSFModel, MoffatModel2
from ..MUSE.PSF import MOFFAT1, create_psf_cube
from ..sdetect.sea import (segmentation, findCentralDetection,
                           union, intersection, compute_optimal_spectrum)


__all__ = ('Source', 'SourceList', 'matchlines', 'crackz')

emlines = {1215.67: 'LYALPHA1216',
           1550.0: 'CIV1550',
           1909.0: 'CIII]1909',
           2326.0: 'CII2326',
           2801.0: 'MgII2801',
           3726.032: '[OII]3726',
           3728.8149: '[OII]3729',
           3798.6001: 'HTHETA3799',
           3834.6599: 'HETA3835',
           3869.0: '[NeIII]3869',
           3888.7: 'HZETA3888',
           3967.0: '[NeIII]3967',
           4102.0: 'HDELTA4102',
           4340.0: 'HGAMMA4340',
           4861.3198: 'HBETA4861',
           4959.0: '[OIII]4959',
           5007.0: '[OIII]5007',
           6548.0: '[NII]6548',
           6562.7998: 'HALPHA6563',
           6583.0: '[NII]6583',
           6716.0: '[SII]6716',
           6731.0: '[SII]6731'}


STR_DTYPE = 'U20'

TABLES_SCHEMA = {
    # Version of the source format, see SourceICD.pdf
    'version': '0.6',
    'MAG': {
        'BAND': {
            'description': 'Filter name',
            'dtype': STR_DTYPE,
            'primary_index': True
        },
        'MAG': {
            'format': '.3f',
            'description': 'AB Magnitude',
            'unit': 'mag',
            'dtype': 'f8'
        },
        'MAG_ERR': {
            'format': '.3f',
            'description': 'Error in AB Magnitude',
            'unit': 'mag',
            'dtype': 'f8'
        }
    },
    'Z': {
        'Z': {
            'description': 'Estimated redshift',
            'format': '.4f',
            'unit': '',  # dimensionless_unscaled
            'dtype': 'f8'
        },
        'Z_MIN': {
            'description': 'Lower bound of estimated redshift',
            'format': '.4f',
            'unit': '',  # dimensionless_unscaled
            'dtype': 'f8'
        },
        'Z_MAX': {
            'description': 'Upper bound of estimated redshift',
            'format': '.4f',
            'unit': '',  # dimensionless_unscaled
            'dtype': 'f8'
        },
        'Z_DESC': {
            'description': 'Type of redshift',
            'dtype': STR_DTYPE,
            'primary_index': True
        }
    }
}


def _set_table_attributes(name, table):
    for colname, attributes in TABLES_SCHEMA[name].items():
        for attr, value in attributes.items():
            if attr not in ('dtype', 'primary_index'):
                setattr(table[colname], attr, value)
            elif attr == 'primary_index':
                table.add_index(colname, unique=True)


def _headercorrected(hdr):
    """Handle keywords that have been renamed."""
    # COM*** -> COMMENT
    i = 1
    while 'COM%03d' % i in hdr:
        value = hdr['COM%03d' % i]
        comment = hdr.cards['COM%03d' % i].comment
        hdr['COMMENT'] = '[%s] %s' % (comment, value)
        del hdr['COM%03d' % i]
        i += 1
    # HIST*** -> HISTORY
    i = 1
    while 'HIST%03d' % i in hdr:
        value = hdr['HIST%03d' % i]
        comment = hdr.cards['HIST%03d' % i].comment
        hdr['HISTORY'] = '%s (%s)' % (value, comment)
        del hdr['HIST%03d' % i]
        i += 1
    # ORIGIN -> FROM
    if 'ORIGIN' in hdr.keys():
        hdr.rename_keyword('ORIGIN', 'FROM')
    if 'ORIGIN_V' in hdr.keys():
        hdr.rename_keyword('ORIGIN_V', 'FROM_V')
    # SOURCE_V -> FORMAT
    if 'SOURCE_V' in hdr.keys():
        hdr.rename_keyword('SOURCE_V', 'FORMAT')
    # SRC_VERS -> SRC_V
    if 'SRC_VERS' in hdr.keys():
        hdr.rename_keyword('SRC_VERS', 'SRC_V')


[docs] def matchlines(nlines, wl, z, eml): """Try to match all the lines given. For each line computes the distance in Angstroms to the closest line. Add the errors Algorithm from Johan Richard (johan.richard@univ-lyon1.fr) Parameters ---------- nlines : int Number of emission lines wl : array of float Table of wavelengths z : float Redshift to test eml : dict Full catalog of lines to test redshift. key: wavelength, value: name. Returns ------- out : (array of float, array of float) (list of wavelengths, errors) """ lbdas = np.array(list(eml.keys())) a = (wl[:, np.newaxis] / (1 + z) - lbdas[np.newaxis, :]) ** 2.0 jfound = np.argmin(a, axis=1) error = np.diag(a[:, jfound]).sum() error = np.sqrt(error / nlines) if((nlines >= 2)and(jfound[0] == jfound[1])): error = 15. return(error, jfound)
[docs] def crackz(nlines, wl, flux, eml, zguess=None): """Method to estimate the best redshift matching a list of emission lines. Algorithm from Johan Richard (johan.richard@univ-lyon1.fr) Parameters ---------- nlines : int Number of emission lines wl : array of float Table of observed line wavelengths flux : array of float Table of line fluxes eml : dict Full catalog of lines to test redshift zguess : float Guess redshift to test (only this) Returns ------- out : (float, float, int, list of float, list of float, list of str) (redshift, redshift error, list of wavelengths, list of fluxes, list of lines names) """ errmin = 3.0 found = 0 lnames = np.array(list(eml.values())) lbdas = np.array(list(eml.keys())) if(nlines == 0): return -9999.0, -9999.0, 0, [], [], [] if(nlines == 1): return -9999.0, -9999.0, 1, wl, flux, ["Lya/[OII]"] if zguess: (error, jfound) = matchlines(nlines, wl, zguess, eml) if(error < errmin): return zguess, -9999.0, 1, wl, flux, list(lnames[jfound[0]]) else: return zguess, -9999.0, 1, [], [], [] # test all redshift combinations for n in range(nlines): for p in range(lbdas.shape[0]): ztest = wl[n] / lbdas[p] - 1.0 if(ztest >= 0): (error, jfound) = matchlines(nlines, wl, ztest, eml) if(error < errmin): errmin = error found = 1 zfound = ztest jfinal = jfound.copy() if(found == 1): jfinal = np.array(jfinal).astype(int) return zfound, errmin / np.min(lbdas[jfinal]), nlines, \ wl, flux, list(lnames[jfinal[0:nlines]]) else: if(nlines > 3): # keep the three brightest ksel = np.argsort(flux)[-1:-4:-1] return crackz(3, wl[ksel], flux[ksel], eml) if(nlines == 3): # keep the two brightest ksel = np.argsort(flux)[-1:-3:-1] return crackz(2, wl[ksel], flux[ksel], eml) if(nlines == 2): # keep the brightest ksel = np.argsort(flux)[-1] return crackz(1, [wl[ksel]], [flux[ksel]], eml) return -9999.0, -9999.0, 0, [], [], []
def _mask_invalid(tables): tables = [tables] if isinstance(tables, Table) else tables for tab in tables: if tab is not None: for name, col in tab.columns.items(): try: tab[name] = ma.masked_invalid(col) tab[name] = ma.masked_equal(col, -9999) except Exception: pass def _read_ext(cls, hdulist, extname, **kwargs): """Read an extension from a FITS HDUList.""" try: if cls == Table: # use Table.read method to ensure extra header keywords are loaded # as metadata obj = Table.read(hdulist, hdu=extname) obj = Table(obj, **kwargs) else: obj = cls(hdulist[extname].data, **kwargs) except Exception as e: raise IOError('%s: Impossible to open extension %s as a %s\n%s' % ( os.path.basename(hdulist.filename()), extname, cls.__name__, e)) return obj def _read_mpdaf_obj(cls, hdulist, ext, **kwargs): """Read an extension from a FITS HDUList and return an MPDAF object.""" filename = hdulist.filename() try: obj = cls(filename=filename, hdulist=hdulist, ext=ext, **kwargs) except Exception as e: raise IOError('%s: Impossible to open extension %s as a %s\n%s' % ( os.path.basename(filename), ext, cls.__name__, e)) return obj def _read_table(hdulist, extname, **kwargs): """Read a masked Table from a FITS HDUList.""" t = _read_ext(Table, hdulist, extname, **kwargs) h = hdulist[extname].header for i in range(h['TFIELDS']): try: t.columns[i].unit = h['TUNIT%d' % (i + 1)] except Exception: pass return t def _remove_hdu(hdulist, name): try: del hdulist[name] except KeyError: pass def _insert_or_update_hdu(hdulist, name, hdu): try: idx = hdulist.index_of(name) hdulist[idx] = hdu except KeyError: hdulist.append(hdu) def _write_mpdaf_obj(obj, type_, name, hdulist): ext_name = '{}_{}_DATA'.format(type_, name) savemask = 'nan' if obj.data.dtype.kind == 'f' else 'dq' datahdu = obj.get_data_hdu(name=ext_name, savemask=savemask) _insert_or_update_hdu(hdulist, ext_name, datahdu) ext_name = '{}_{}_STAT'.format(type_, name) hdu = obj.get_stat_hdu(name=ext_name, header=datahdu.header) if hdu is not None: _insert_or_update_hdu(hdulist, ext_name, hdu) if savemask == 'dq': ext_name = '{}_{}_DQ'.format(type_, name) hdu = obj.get_dq_hdu(name=ext_name, header=datahdu.header) if hdu is not None: _insert_or_update_hdu(hdulist, ext_name, hdu) def _write_table(table, name, hdulist): if table is None: return hdu = pyfits.table_to_hdu(table) hdu.name = name _insert_or_update_hdu(hdulist, name, hdu) _INIT_FUNCS = { 'TAB': partial(_read_table, masked=True), 'SPE': partial(_read_mpdaf_obj, Spectrum), 'IMA': partial(_read_mpdaf_obj, Image), 'CUB': partial(_read_mpdaf_obj, Cube) } _ATTRIBUTES_TO_EXTNAME = { 'tables': 'TAB', 'spectra': 'SPE', 'images': 'IMA', 'cubes': 'CUB' } _EXTNAME_TO_ATTRIBUTES = {v: k for k, v in _ATTRIBUTES_TO_EXTNAME.items()} class ExtLoader(collections.abc.MutableMapping): """Handles loading of FITS extensions. To avoid loading all the extensions of a source FITS file, this class allows one to load an extension only when the corresponding object is used. """ delayed_types = (str, tuple) def __init__(self, type_, filename=None, data=None): self.data = {} self.loaded_ext = set() self.deleted_ext = set() self.filename = filename self.type = type_ if data is not None: self.data.update(data) def isloaded(self, key): return key in self.loaded_ext def __repr__(self): keys = self.data.keys() return "{} {}: {}".format(len(keys), _EXTNAME_TO_ATTRIBUTES[self.type], " ".join(keys)) def __getitem__(self, key): value = self.data[key] if isinstance(value, self.delayed_types): with pyfits.open(self.filename) as hdulist: value = _INIT_FUNCS[self.type](hdulist, value) self.data[key] = value self.loaded_ext.add(key) if isinstance(value, Table): _mask_invalid(value) return value def __setitem__(self, key, value): self.data[key] = value if not isinstance(value, self.delayed_types): self.loaded_ext.add(key) if key in self.deleted_ext: self.deleted_ext.remove(key) def __delitem__(self, key): del self.data[key] self.deleted_ext.add(key) if key in self.loaded_ext: self.loaded_ext.remove(key) def __iter__(self): return iter(self.data) def __len__(self): return len(self.data) def _ipython_key_completions_(self): return self.data.keys()
[docs] class Source: """This class contains a Source object. Parameters ---------- header : `astropy.io.fits.Header` FITS header instance. lines : `astropy.table.Table` List of lines. mag : `astropy.table.Table` List of magnitudes. z : `astropy.table.Table` List of redshifts. spectra : dict Spectra dictionary, keys give origin of spectra (``'tot'`` for total spectrum, TBC). Values are `~mpdaf.obj.Spectrum` objects. images : dict Images dictionary, keys give filter names (``'MUSE_WHITE'`` for white image, TBC). Values are `~mpdaf.obj.Image` objects. cubes : dict Dictionary containing small data cubes. Keys gives a description of the cube. Values are `~mpdaf.obj.Cube` objects. tables : dict Dictionary containing tables. Keys give a description of each table. Values are `astropy.table.Table` objects. mask_invalid : bool If True (default), iterate on all columns of all tables to mask invalid values (Inf, NaN, and -9999). default_size : float Default size for image extraction, in arcseconds. """ def __init__(self, header, lines=None, mag=None, z=None, spectra=None, images=None, cubes=None, tables=None, mask_invalid=True, filename=None, default_size=None): kwargs = locals() # Check required keywords in the FITS header for key in ('RA', 'DEC', 'ID', 'CUBE', 'CUBE_V', 'FROM', 'FROM_V'): if key not in header: raise ValueError('{} keyword is mandatory to create a Source ' 'object'.format(key)) self._logger = logging.getLogger(__name__) self._filename = filename self._default_size = default_size self.header = header if 'SRC_V' not in self.header.keys(): self.header['SRC_V'] = '' # Default tables: LINES, MAG, Z self.lines = lines self.mag = mag self.z = z for key in ('spectra', 'images', 'cubes', 'tables'): attr = kwargs[key] type_ = _ATTRIBUTES_TO_EXTNAME[key] if attr is None: setattr(self, key, ExtLoader(type_, filename=filename)) elif isinstance(attr, ExtLoader): setattr(self, key, attr) else: setattr(self, key, ExtLoader(type_, data=attr)) if mask_invalid: self.masked_invalid() def __getstate__(self): state = self.__dict__.copy() # remove un-pickable objects state['_logger'] = None return state def __setstate__(self, state): for slot, value in state.items(): setattr(self, slot, value) self._logger = logging.getLogger(__name__) def __dir__(self): return list(self.header.keys()) + super(Source, self).__dir__()
[docs] @classmethod def from_data(cls, ID, ra, dec, origin, proba=None, confid=None, extras=None, **kwargs): """Source constructor from a list of data. Additional parameters are passed to the `Source` constructor. Parameters ---------- ID : int ID of the source ra : double Right ascension in degrees dec : double Declination in degrees origin : tuple (str, str, str, str) 1- Name of the detector software which creates this object 2- Version of the detector software which creates this object 3- Name of the FITS data cube from which this object has been extracted. 4- Version of the FITS data cube proba : float Detection probability confid : int Expert confidence index extras : dict{key: value} or dict{key: (value, comment)} Extra header keywords """ header = pyfits.Header() header['ID'] = (ID, 'object ID %d') header['RA'] = (ra, 'RA u.degree %.7f') header['DEC'] = (dec, 'DEC u.degree %.7f') header['FROM'] = (origin[0], 'detection software') header['FROM_V'] = (origin[1], 'version of the detection software') header['CUBE'] = (os.path.basename(origin[2]), 'datacube') header['CUBE_V'] = (origin[3], 'version of the datacube') if proba is not None: header['DPROBA'] = (proba, 'Detection probability') if confid is not None: header['CONFID'] = (confid, 'Confidence index') if extras is not None: header.update(extras) return cls(header, filename=None, **kwargs)
[docs] @classmethod def from_file(cls, filename, ext=None, mask_invalid=True): """Source constructor from a FITS file. Parameters ---------- filename : str FITS filename ext : str or list of str Names of the FITS extensions that will be loaded in the source object. Regular expression accepted. mask_invalid : bool If True (default), iterate on all columns of all tables to mask invalid values (Inf, NaN, and -9999). """ hdulist = pyfits.open(filename) hdr = hdulist[0].header _headercorrected(hdr) spectra = ExtLoader('SPE', filename=filename) images = ExtLoader('IMA', filename=filename) cubes = ExtLoader('CUB', filename=filename) tables = ExtLoader('TAB', filename=filename) lines = mag = z = None logger = logging.getLogger(__name__) if ext is None: extnames = [h.name for h in hdulist[1:]] elif isinstance(ext, str): extnames = [h.name for h in hdulist[1:] if re.findall(ext, h.name)] else: extnames = [h.name for e in ext for h in hdulist[1:] if re.findall(e, h.name)] if 'LINES' in extnames: lines = _read_table(hdulist, 'LINES', masked=True) for name in lines.colnames: if 'LBDA' in name or 'EQW' in name: lines[name].format = '.2f' if 'FLUX' in name or 'FWHM' in name: lines[name].format = '.1f' if 'MAG' in extnames: mag = _read_table(hdulist, 'MAG', masked=True) _set_table_attributes('MAG', mag) if 'Z' in extnames: z = _read_table(hdulist, 'Z', masked=True) _set_table_attributes('Z', z) if 'Z_ERR' in z.colnames: # Compatibility with old versions z['Z_ERR'].format = '.4f' z['Z_ERR'].description = 'Error of estimated redshift' for i, hdu in enumerate(hdulist[1:]): try: extname = hdu.name if not extname: raise IOError('%s: Extension %d without EXTNAME' % ( os.path.basename(filename), i)) if extname in extnames: start = extname[:3] end = extname[-4:] if end == 'STAT': continue elif end == 'DATA': name = extname[4:-5] stat_ext = '%s_%s_STAT' % (start, name) ext = [extname] if stat_ext in hdulist: ext.append(stat_ext) dq_ext = '%s_%s_dq' % (start, name) if dq_ext in hdulist: ext.append(dq_ext) if len(ext) == 1: ext = ext[0] else: ext = tuple(ext) if start == 'SPE': spectra[name] = ext elif start == 'IMA': images[name] = ext elif start == 'CUB': cubes[name] = ext elif start == 'TAB': tables[extname[4:]] = extname except Exception as e: logger.warning(e) hdulist.close() if 'CUBE_V' not in hdr: logger.warning('CUBE_V keyword in missing. It will be soon ' 'mandatory and its absence will return an error') hdr['CUBE_V'] = ('', 'datacube version') return cls(hdr, lines, mag, z, spectra, images, cubes, tables, mask_invalid=mask_invalid, filename=os.path.abspath(filename))
@property def default_size(self): """Default size image extraction, in arcseconds. If not set, the size from the white-light image (MUSE_WHITE) is used. """ if self._default_size is None: try: im = self.images['MUSE_WHITE'] except KeyError: raise ValueError('Size of the image is required') else: self._default_size = (im.shape[0] * im.wcs.get_step(unit=u.arcsec)[0]) return self._default_size @default_size.setter def default_size(self, size): self._default_size = size
[docs] def write(self, filename, overwrite=True): """Write the source object in a FITS file. Parameters ---------- filename : str FITS filename overwrite : bool If ``True``, overwrite the output file if it exists. """ if not overwrite and os.path.exists(filename): raise OSError("File '%s' already exists." % filename) if self._filename is None: # create and write the FITS file from scratch prihdu = pyfits.PrimaryHDU(header=self.header) prihdu.header['DATE'] = (str(datetime.datetime.now()), 'Creation date') prihdu.header['AUTHOR'] = ('MPDAF', 'Origin of the file') prihdu.header['FORMAT'] = (TABLES_SCHEMA['version'], 'Version of the Source format') hdulist = pyfits.HDUList([prihdu]) _write_table(self.lines, 'LINES', hdulist) _write_table(self.mag, 'MAG', hdulist) _write_table(self.z, 'Z', hdulist) for typ in ('spectra', 'images', 'cubes'): for key, obj in getattr(self, typ).items(): _write_mpdaf_obj(obj, _ATTRIBUTES_TO_EXTNAME[typ], key, hdulist) # tables for key, tab in self.tables.items(): _write_table(tab, 'TAB_%s' % key, hdulist) # save to disk hdulist.writeto(filename, overwrite=True, output_verify='fix') else: # update the existing FITS file if os.path.abspath(filename) != self._filename: shutil.copy(self._filename, filename) with pyfits.open(filename, mode='update') as hdulist: hdulist[0].header = self.header _write_table(self.lines, 'LINES', hdulist) _write_table(self.mag, 'MAG', hdulist) _write_table(self.z, 'Z', hdulist) for typ in ('spectra', 'images', 'cubes'): obj = getattr(self, typ) extname = _ATTRIBUTES_TO_EXTNAME[typ] for key in obj.loaded_ext: _write_mpdaf_obj(obj[key], extname, key, hdulist) for key in obj.deleted_ext: _remove_hdu(hdulist, '{}_{}_DATA'.format(extname, key)) _remove_hdu(hdulist, '{}_{}_STAT'.format(extname, key)) # tables for key in self.tables.loaded_ext: _write_table(self.tables[key], 'TAB_%s' % key, hdulist) for key in self.tables.deleted_ext: _remove_hdu(hdulist, 'TAB_%s' % key) hdulist.flush()
[docs] def info(self): """Print information.""" info = self._logger.info excluded_cards = {'SIMPLE', 'BITPIX', 'NAXIS', 'EXTEND', 'DATE', 'AUTHOR'} for card in self.header.cards: if card.keyword not in excluded_cards: info(card) for attr in (self.spectra, self.images, self.cubes, self.tables): info(repr(attr)) for name, tab in (('lines', self.lines), ('magnitudes', self.mag), ('redshifts', self.z)): if tab is not None: info("%d %s" % (len(tab), name))
def __getattr__(self, item): """Map values to attributes.""" try: return self.header[item] except KeyError: raise AttributeError(item) def __setattr__(self, item, value): """Map attributes to values.""" if item in ('header', 'lines', 'mag', 'z', 'cubes', 'images', 'spectra', 'tables', '_logger', '_filename', '_default_size', 'default_size'): super(Source, self).__setattr__(item, value) else: self.header[item] = value
[docs] def add_comment(self, comment, author, date=None): """Add a user comment to the FITS header of the Source object. Parameters ---------- comment : str Comment. author : str Initials of the author. date : datetime.date Date, by default the current local date is used. """ date = date or datetime.date.today() self.header['COMMENT'] = '[%s %s] %s' % (author, str(date), comment)
[docs] def add_history(self, text, author='', date=None): """Add a history to the FITS header of the Source object. Parameters ---------- text : str History text. author : str Initials of the author. date : datetime.date Date, by default the current local date is used. """ date = date or datetime.date.today() version = self.header['SRC_V'] ttext = '[%s] %s (%s %s)' % (version, text, author, str(date)) if len(ttext) > 68: n = len(text) - len(ttext) + 68 ttext = '[%s] %s (%s %s)' % (version, text[:n], author, str(date)) self.header['HISTORY'] = ttext
[docs] def add_attr(self, key, value, desc=None, unit=None, fmt=None): """Add a new attribute for the current Source object. This attribute will be saved as a keyword in the primary FITS header. This method could also be used to update a simple Source attribute that is saved in the pyfits header. Equivalent to ``self.key = (value, comment)``. Parameters ---------- key : str Attribute name value : int/float/str Attribute value desc : str Attribute description unit : `astropy.units.Unit` Attribute units fmt : str Attribute format ('.2f' for example) """ if desc is None: desc = '' if unit is not None: desc += ' u.%s' % (unit.to_string('fits')) if fmt is not None: desc += ' %%%s' % fmt self.header[key] = (value, desc)
[docs] def remove_attr(self, key): """Remove an Source attribute from the FITS header of the Source object.""" del self.header[key]
[docs] def add_z(self, desc, z, errz=0): """Add a redshift value to the z table. Parameters ---------- desc : str Redshift description. z : float Redshidt value. errz : float or (float,float) Redshift error (deltaz) or redshift interval (zmin,zmax). """ if np.isscalar(errz): if errz == -9999: zmin = -9999 zmax = -9999 else: zmin = z - errz / 2 zmax = z + errz / 2 else: try: zmin, zmax = errz except Exception: raise ValueError('Wrong type for errz in add_z') if self.z is None: if z != -9999: names = ('Z_DESC', 'Z', 'Z_MIN', 'Z_MAX') dtypes = [TABLES_SCHEMA['Z'][name]['dtype'] for name in names] self.z = Table(names=names, rows=[[desc, z, zmin, zmax]], dtype=dtypes, masked=True) _set_table_attributes('Z', self.z) else: if desc in self.z['Z_DESC']: sel = self.z['Z_DESC'] == desc if z != -9999: self.z['Z'][sel] = z self.z['Z_MIN'][sel] = zmin self.z['Z_MAX'][sel] = zmax else: index = np.where(sel)[0][0] self.z.remove_row(index) else: if z != -9999: self.z.add_row([desc, z, zmin, zmax]) if self.z is not None: self.z['Z'] = ma.masked_equal(self.z['Z'], -9999) self.z['Z_MIN'] = ma.masked_equal(self.z['Z_MIN'], -9999) self.z['Z_MAX'] = ma.masked_equal(self.z['Z_MAX'], -9999)
[docs] def add_mag(self, band, m, errm): """Add a magnitude value to the mag table. Parameters ---------- band : str Filter name. m : float Magnitude value. errm : float Magnitude error. """ if self.mag is None: names = ['BAND', 'MAG', 'MAG_ERR'] dtypes = [TABLES_SCHEMA['MAG'][name]['dtype'] for name in names] self.mag = Table(names=names, rows=[[band, m, errm]], dtype=dtypes, masked=True) _set_table_attributes('MAG', self.mag) else: if band in self.mag['BAND']: self.mag['MAG'][self.mag['BAND'] == band] = m self.mag['MAG_ERR'][self.mag['BAND'] == band] = errm else: self.mag.add_row([band, m, errm])
[docs] def add_line(self, cols, values, units=None, desc=None, fmt=None, match=None): """Add a line to the lines table. Parameters ---------- cols : list of str Names of the columns values : list<int/float/str> List of corresponding values units : list<astropy.units> Unit of each column desc : list of str Description of each column fmt : list of str Format of each column. match : (str, float/int/str, bool) Tuple (key, value, False/True) that gives the key to match the added line with an existing line. eg ('LINE','LYALPHA1216', True) If the boolean is True, the line will be added even if it is not matched. """ if self.lines is None: types = [] for val in values: if is_int(val): types.append('<i4') elif is_float(val): types.append('<f8') else: types.append(STR_DTYPE) self.lines = Table(rows=[values], names=cols, dtype=types, masked=True) if units is not None: for colname, unit in zip(self.lines.colnames, units): self.lines[colname].unit = unit if desc is not None: for colname, d in zip(self.lines.colnames, desc): self.lines[colname].description = d if fmt is not None: for colname, f in zip(self.lines.colnames, fmt): self.lines[colname].format = f else: # add new columns if units is None: units = [None] * len(cols) if desc is None: desc = [None] * len(cols) if fmt is None: fmt = [None] * len(cols) for col, val, unit, d, f in zip(cols, values, units, desc, fmt): if col not in self.lines.colnames: nlines = len(self.lines) if is_int(val): typ = '<i4' elif is_float(val): typ = '<f8' else: typ = STR_DTYPE col = MaskedColumn(ma.masked_array(np.empty(nlines), mask=np.ones(nlines)), name=col, dtype=typ, unit=unit, description=d, format=f) self.lines.add_column(col) if match is not None: if len(match) == 2: matchkey, matchval = match add_if_not_matched = False else: matchkey, matchval, add_if_not_matched = match if match is not None and matchkey in self.lines.colnames: l = np.argwhere(self.lines[matchkey] == matchval) if len(l) > 0: for col, val, unit in zip(cols, values, units): if unit is None or unit == self.lines[col].unit: self.lines[col][l] = val else: self.lines[col][l] = (val * unit).to( self.lines[col].unit).value return else: if not add_if_not_matched: return # add new row ncol = len(self.lines.colnames) row = [None] * ncol mask = np.ones(ncol) for col, val, unit in zip(cols, values, units): i = self.lines.colnames.index(col) if unit is None or unit == self.lines[col].unit: row[i] = val else: row[i] = (val * unit).to(self.lines[col].unit).value mask[i] = 0 self.lines.add_row(row, mask=mask)
[docs] def add_image(self, image, name, size=None, minsize=2.0, unit_size=u.arcsec, rotate=False, order=1): """Extract an image centered on the source center from the input image and append it to the images dictionary. Extracted image saved in ``self.images[name]``. Parameters ---------- image : `~mpdaf.obj.Image` Input image MPDAF object. name : str Name used to distinguish this image size : float The size to extract. It corresponds to the size along the delta axis and the image is square. If None, the size of the white image extension is taken if it exists. unit_size : `astropy.units.Unit` Unit of ``size`` and ``minsize``. Arcseconds by default (use None for size in pixels). minsize : float The minimum size of the output image. rotate : bool if True, the image is rotated to the same PA as the white-light image. order : int The order of the prefilter that is applied by the affine transform function for the rotation. """ if size is None: size = self.default_size if unit_size is None: minsize *= image.wcs.get_step(unit=u.arcsec)[0] elif unit_size != u.arcsec: minsize = (minsize * unit_size).to(u.arcsec).value unit_size = u.arcsec center = (self.dec, self.ra) kwargs = dict(minsize=minsize, unit_center=u.deg, unit_size=unit_size) if rotate: try: white_ima = self.images['MUSE_WHITE'] except KeyError: raise ValueError('MUSE_WHITE image is required to get the ' 'rotation angle') pa_white = white_ima.get_rot() pa = image.get_rot() if np.abs(pa_white - pa) > 1.e-3: image = image.subimage(center, size * 1.5, **kwargs) uniq = np.unique(image.data.data) if ((uniq == 0) | (uniq == 1)).all(): image = image.rotate(pa_white - pa, order=0) else: image = image.rotate(pa_white - pa, order=order) try: subima = image.subimage(center, size, **kwargs) except Exception: self._logger.warning('Image %s not added. Source outside or at the' ' edges', name) else: self.images[name] = subima
[docs] def add_cube(self, cube, name, size=None, lbda=None, add_white=False, unit_size=u.arcsec, unit_wave=u.angstrom): """Extract a cube centered on the source center and append it to the cubes dictionary. Extracted cube saved in ``self.cubes[name]``. Parameters ---------- cube : `~mpdaf.obj.Cube` Input cube MPDAF object. name : str Name used to distinguish this cube size : float The size to extract. It corresponds to the size along the delta axis and the image is square. If None, the size of the white image extension is taken if it exists. lbda : (float, float) or None If not None, tuple giving the wavelength range. add_white : bool Add white image from the extracted cube. unit_size : `astropy.units.Unit` Unit of the size value (arcseconds by default). If None, size is in pixels. unit_wave : `astropy.units.Unit` Wavelengths unit (angstrom by default). If None, inputs are in pixels. """ if size is None: size = self.default_size unit_size = u.arcsec subcub = cube.subcube(center=(self.dec, self.ra), size=size, unit_center=u.deg, unit_size=unit_size) if add_white: self.images['MUSE_WHITE'] = subcub.mean(axis=0) if lbda is not None: subcub = subcub.select_lambda(lbda[0], lbda_max=lbda[1], unit_wave=unit_wave) self.cubes[name] = subcub
[docs] def add_white_image(self, cube, size=5, unit_size=u.arcsec): """Compute the white images from the MUSE data cube and appends it to the images dictionary. White image saved in self.images['MUSE_WHITE']. Parameters ---------- cube : `~mpdaf.obj.Cube` MUSE data cube. size : float The total size to extract in arcseconds. It corresponds to the size along the delta axis and the image is square. By default 5x5arcsec unit_size : `astropy.units.Unit` unit of the size value (arcseconds by default) If None, size is in pixels """ if (self._default_size is not None and size is not None and self._default_size != size): raise ValueError('size does not match the default one') subcub = cube.subcube(center=(self.dec, self.ra), size=size, unit_center=u.deg, unit_size=unit_size) self.images['MUSE_WHITE'] = subcub.mean(axis=0)
[docs] def add_FSF(self, cube, fieldmap=None): """Add FSF keywords from the cube FSF keywords. For mosaic, when multiple fields are mixed with different FSF, the mean FSF is computed using a fieldmap. The cube header must contain the FSFMODE keyword, and currently only the MOFFAT1 mode is handled. If there are multiple fields (keyword NFIELDS>1), then a fieldmap is required. It can be found either in a FIELDMAP extension in the cube file, or provided with the ``fieldmap`` parameter. Then the keywords ``FSFxxBET``, ``FSFxxFWA``, and ``FSFxxFWB`` where xx is the field index (00 for one field), are used to get the Moffat parameters, and are written in the source header. Parameters ---------- cube : `~mpdaf.obj.Cube` Input cube MPDAF object. fieldmap : str Name for the FITS file containing the field map. The field map must be on the same WCS as the cube. If None, the field map is taken from the FIELDMAP extension in the cube file. """ fsfmodel = FSFModel.read(cube) if (fsfmodel.model != "MOFFAT1") and (fsfmodel.model != 2): raise ValueError('This method is coded only for FSFMODE=2') if isinstance(fsfmodel, FSFModel): # just one FSF self.header.update(fsfmodel.to_header(field_idx=0)) else: # load field map, from a dedicated file or from the cube fmap = (FieldsMap(fieldmap) if fieldmap is not None else FieldsMap(cube.filename, extname='FIELDMAP')) # load info from the white image try: white = self.images['MUSE_WHITE'] except KeyError: raise ValueError('Cannot compute FSF if the MUSE_WHITE image ' 'does not exist.') center = cube.wcs.sky2pix((self.dec, self.ra), unit=u.deg)[0] radius = int(white.shape[0] + 0.5) / 2. (sy, sx), (uy, ux), _ = bounding_box( form="rectangle", center=center, radii=radius, shape=cube.shape[1:]) # compute corresponding sub field map subfmap = fmap[sy, sx] # check if submap has been trimmed, when source is on the edge. # if this is the case, we need to extract the same part of the # white image if uy != sy or ux != sx: slices = (slice(sy.start - uy.start, sy.stop - uy.start), slice(sx.start - ux.start, sx.stop - ux.start)) white_data = white._data[slices] else: white_data = white._data # weights w = np.array(subfmap.compute_weights()) w *= white_data[np.newaxis, :, :] w = np.ma.sum(np.ma.masked_invalid(w), axis=(1, 2)) w /= np.ma.sum(np.ma.masked_invalid(w)) w = w.data # FSF ksel = np.where(w != 0) if len(ksel[0]) == 1: # only one field idx = ksel[0][0] self.header.update(fsfmodel[idx].to_header(field_idx=idx + 1)) else: # several fields fwhmdeg = max([len(fsfmodel[i].fwhm_pol) for i in ksel[0]]) - 1 betadeg = max([len(fsfmodel[i].beta_pol) for i in ksel[0]]) - 1 maxorder = max(fwhmdeg, betadeg) nwaves = max(2, maxorder * 5) lbrange = cube.wave.get_range() waves = np.linspace(lbrange[0], lbrange[1], nwaves) # compute FSF for all wavelengths imalist = [] for lbda in waves: FSF = 0 for i in ksel[0]: FSF += w[i] * fsfmodel[i].get_image(lbda, cube.wcs) imalist.append(FSF) beta0 = fsfmodel[np.argmax(w)].get_beta( (lbrange[0] + lbrange[1]) / 2) fwhm0 = fsfmodel[np.argmax(w)].get_fwhm( (lbrange[0] + lbrange[1]) / 2) model = MoffatModel2.from_FSFlist(imalist, waves, fwhm0, beta0, fwhmdeg, betadeg, lbrange) self.header.update(model.to_header(field_idx=99))
[docs] def get_FSF(self): """Return the FSF model if available in the FITS header.""" try: white = self.images['MUSE_WHITE'] pixstep = white.wcs.get_step(unit=u.arcsec)[0] except Exception: pixstep = None try: fsfmodel = FSFModel.read(self.header, pixstep=pixstep) return fsfmodel except ValueError: # no model found return
[docs] def add_narrow_band_images(self, cube, z_desc, eml=None, size=None, unit_size=u.arcsec, width=8, is_sum=False, subtract_off=True, margin=10., fband=3., median_filter=0, method="mean"): """Create narrow-band images from a redshift value and a catalog of lines. Algorithm from Jarle Brinchmann (jarle@strw.leidenuniv.nl) Narrow-band images are saved in ``self.images['NB_']``. Parameters ---------- cube : `~mpdaf.obj.Cube` MUSE data cube. z_desc : str Redshift description. The redshift value corresponding to this description will be used. eml : dict{float: str} Full catalog of lines Dictionary: key is the wavelength value in Angstrom, value is the name of the line. if None, the following catalog is used:: eml = {1216 : 'LYALPHA', 1908: 'SUMCIII1907', 3727: 'SUMOII3726', 4863: 'HBETA' , 5007: 'OIII5007', 6564: 'HALPHA'} size : float The total size to extract. It corresponds to the size along the delta axis and the image is square. If None, the size of the white image extension is taken if it exists. unit_size : `astropy.units.Unit` unit of the size value (arcseconds by default) If None, size is in pixels width : float Narrow-band width(in angstrom). is_sum : bool if True the image is computed as the sum over the wavelength axis, otherwise this is the average. Deprecated, use "sum" as aggregation method. subtract_off : bool If True, subtracting off nearby data. The method computes the subtracted flux by using the algorithm from Jarle Brinchmann (jarle@strw.leidenuniv.nl):: # if method = "mean" sub_flux = mean(flux[lbda1-margin-fband*(lbda2-lbda1)/2: lbda1-margin] + flux[lbda2+margin: lbda2+margin+fband*(lbda2-lbda1)/2]) # or if method = "sum": sub_flux = sum(flux[lbda1-margin-fband*(lbda2-lbda1)/2: lbda1-margin] + flux[lbda2+margin: lbda2+margin+fband*(lbda2-lbda1)/2]) /fband # or if median_filter > 0: sub_flux = median_filter in the wavelength axis of flux margin : float This off-band is offseted by margin wrt narrow-band limit (in angstrom). fband : float The size of the off-band is ``fband x narrow-band width`` (in angstrom). median_filter : float size of the median filter for background estimation (if set to 0, the classical off band images are used ) method : str Name of the Cube method used to aggregate the data. This method must accept the axis=0 parameter and return an image. Example: mean, sum, max. """ if is_sum: warnings.warn( "The 'is_sum' parameter is deprecated. Use method='sum' " "instead. Aggregation function set to sum.", MpdafWarning) method = "sum" if self.z is None: self._logger.warning('Cannot generate narrow-band image if the ' 'redshift is None.') return if size is None: size = self.default_size unit_size = u.arcsec subcub = cube.subcube(center=(self.dec, self.ra), size=size, unit_center=u.deg, unit_size=unit_size) z = self.z['Z'][self.z['Z_DESC'] == z_desc] if z > 0: if eml is None: all_lines = np.array([1216, 1908, 3727, 4863, 5007, 6564]) all_tags = np.array(['LYALPHA', 'SUMCIII1907', 'SUMOII3726', 'HBETA', 'OIII5007', 'HALPHA']) else: all_lines = np.array(list(eml.keys())) all_tags = np.array(list(eml.values())) minl, maxl = subcub.wave.get_range(unit=u.angstrom) / (1 + z) useful = np.where((all_lines > minl) & (all_lines < maxl)) nlines = len(useful[0]) if nlines > 0: lambda_ranges = np.empty((2, nlines)) lambda_ranges[0, :] = (1 + z) * all_lines[useful] - width / 2.0 lambda_ranges[1, :] = (1 + z) * all_lines[useful] + width / 2.0 tags = all_tags[useful] for l1, l2, tag in zip(lambda_ranges[0, :], lambda_ranges[1, :], tags): # self._logger.debug('Generate narrow band image for NB_%s' # ' with z=%s', tag, z[0]) self.images['NB_' + tag] = subcub.get_image( wave=(l1, l2), method=method, subtract_off=subtract_off, margin=margin, fband=fband, median_filter=median_filter, unit_wave=u.angstrom)
[docs] def add_narrow_band_image_lbdaobs(self, cube, tag, lbda, size=None, unit_size=u.arcsec, width=8, is_sum=False, subtract_off=True, margin=10., fband=3., median_filter=0, method="mean"): """Create narrow-band image around an observed wavelength value. Parameters ---------- cube : `~mpdaf.obj.Cube` MUSE data cube. tag : str key used to identify the new narrow-band image in the images dictionary. lbda : float Observed wavelength value in angstrom. size : float The total size to extract in arcseconds. It corresponds to the size along the delta axis and the image is square. If None, the size of the white image extension is taken if it exists. unit_size : `astropy.units.Unit` unit of the size value (arcseconds by default) If None, size is in pixels width : float Angstrom total width is_sum : bool if True the image is computed as the sum over the wavelength axis, otherwise this is the average. Deprecated, use "sum" as aggregation method. subtract_off : bool If True, subtracting off nearby data. margin : float This off-band is offseted by margin wrt narrow-band limit (in angstrom). fband : float The size of the off-band is fband*narrow-band width (in angstrom). method : str Name of the Cube method used to aggregate the data. This method must accept the axis=0 parameter and return an image. Example: mean, sum, max. """ if is_sum: warnings.warn( "The 'is_sum' parameter is deprecated. Use method='sum' " "instead. Aggregation function set to sum.", MpdafWarning) method = "sum" if size is None: size = self.default_size unit_size = u.arcsec l1 = lbda - width / 2.0 l2 = lbda + width / 2.0 subcub = cube.subcube(center=(self.dec, self.ra), size=size, unit_center=u.deg, unit_size=unit_size) self.images[tag] = subcub.get_image(wave=(l1, l2), method=method, subtract_off=subtract_off, margin=margin, fband=fband, median_filter=median_filter, unit_wave=u.angstrom)
[docs] def add_seg_images(self, tags=None, DIR=None, del_sex=True, save_seg_table=False, outdir='./', debug=False,): """Run SExtractor on all images to create segmentation maps. SExtractor will use the ``default.nnw``, ``default.param``, ``default.sex`` and ``*.conv`` files present in the current directory. If not present default parameter files are created or copied from the directory given in input (DIR). Algorithm from Jarle Brinchmann (jarle@strw.leidenuniv.nl) Parameters ---------- tags : list of str List of tags of selected images DIR : str Directory that contains the configuration files of sextractor del_sex : bool If False, configuration files of sextractor are not removed. save_seg_table : bool If True, segmentation table are saved in the source tables dict outdir : str Name of directory where temporary files are copied and SExtractor run if None, a temporary directory with a unique name is created and deleted at the end debug : bool if True, the output of SExtractor is logged as DEBUG and the created and temporary directory files are not deleted """ if 'MUSE_WHITE' in self.images: if tags is None: tags = [tag for tag in self.images if tag[0:4] != 'SEG_' and 'MASK' not in tag] segmentation(self, tags, DIR, del_sex, debug=debug, save_seg_table=save_seg_table, outdir=outdir) else: self._logger.warning('add_seg_images method use the MUSE_WHITE ' 'image computed by add_white_image method')
[docs] def find_sky_mask(self, seg_tags, sky_mask='MASK_SKY'): """Loop over all segmentation images and use the region where no object is detected in any segmentation map as our sky image. Algorithm from Jarle Brinchmann (jarle@strw.leidenuniv.nl) Parameters ---------- seg_tags : list of str List of tags of selected segmentation images. sky_mask : str Name of the sky mask image. """ shape = self.images[seg_tags[0]].shape wcs = self.images[seg_tags[0]].wcs mask = np.ones(shape, dtype=bool) for key in seg_tags: im = self.images[key] if im.shape == shape: mask &= (~np.asarray(im.data, dtype=bool)) else: raise IOError('segmentation maps have not the same dimensions') self.images[sky_mask] = Image(wcs=wcs, dtype=np.uint8, copy=False, data=mask)
[docs] def find_union_mask(self, seg_tags, union_mask='MASK_UNION'): """Use the list of segmentation maps to compute the union mask. Algorithm from Jarle Brinchmann (jarle@strw.leidenuniv.nl): 1- Select on each segmentation map the object at the centre of the map. (the algo supposes that each objects have different labels) 2- compute the union of these selected objects Parameters ---------- tags : list of str List of tags of selected segmentation images union_mask : str Name of the union mask image. """ wcs = self.images['MUSE_WHITE'].wcs yc, xc = wcs.sky2pix((self.DEC, self.RA), unit=u.deg)[0] maps = {} for tag in seg_tags: if tag[:4] == 'SEG_': maps[tag[4:]] = self.images[tag].data.data else: maps[tag] = self.images[tag].data.data r = findCentralDetection(maps, yc, xc, tolerance=3) self.images[union_mask] = Image(wcs=wcs, dtype=np.uint8, copy=False, data=union(list(r['seg'].values())))
[docs] def find_intersection_mask(self, seg_tags, inter_mask='MASK_INTER'): """Use the list of segmentation maps to compute the instersection mask. Algorithm from Jarle Brinchmann (jarle@strw.leidenuniv.nl): 1- Select on each segmentation map the object at the centre of the map. (the algo supposes that each objects have different labels) 2- compute the intersection of these selected objects Parameters ---------- tags : list of str List of tags of selected segmentation images inter_mask : str Name of the intersection mask image. """ wcs = self.images['MUSE_WHITE'].wcs yc, xc = wcs.sky2pix((self.DEC, self.RA), unit=u.deg)[0] maps = {} for tag in seg_tags: if tag[0:4] == 'SEG_': maps[tag[4:]] = self.images[tag].data.data else: maps[tag] = self.images[tag].data.data r = findCentralDetection(maps, yc, xc, tolerance=3) self.images[inter_mask] = Image( wcs=wcs, dtype=np.uint8, copy=False, data=intersection(list(r['seg'].values())) )
[docs] def add_table(self, tab, name, columns=None, select_in=None, margin=0, ra=None, dec=None, col_dist=None, col_edgedist=None, digit=3): """Append an astropy table to the tables dictionary. Parameters ---------- tab : `astropy.table.Table` or `mpdaf.sdetect.Catalog` Input Table object. name : str Name used to distinguish this table. columns : list of str List of column names to select. select_in : str Name of the image (available in the source) to use for the WCS selection. margin : int Margin from the edges (pixels) for the WCS selection. ra : str Name of the RA column (degrees) for WCS selection and distance. dec : str Name of the DEC column (degrees) for WCS selection and distance. col_dist : str Name of the column with the distance to the source in arcsec. If None distance is not computed. Defaults to DIST. col_edgedist : str Name of the column with the distance to the image edges. If None distance is not computed. digit : int Number of digits to round distances, defaults to 3. """ if columns: tab = tab[columns] if select_in: wcs = self.images[select_in].wcs tab = tab.select(wcs, ra=ra, dec=dec, margin=margin) if len(tab) == 0: return if col_dist is not None: from astropy.coordinates import SkyCoord scat_coords = tab.to_skycoord(ra=ra, dec=dec) src_coord = SkyCoord(ra=self.RA, dec=self.DEC, unit=('deg', 'deg'), frame='fk5') tab[col_dist] = src_coord.separation(scat_coords).arcsec if digit is not None: tab[col_dist] = np.round(tab[col_dist], digit) tab.sort(col_dist) if col_edgedist is not None: tab[col_edgedist] = tab.edgedist(wcs, ra=ra, dec=dec) if digit is not None: tab[col_edgedist] = np.round(tab[col_edgedist], digit) self.tables[name] = tab
[docs] def extract_spectra(self, cube, obj_mask='MASK_UNION', sky_mask='MASK_SKY', tags_to_try=('MUSE_WHITE', 'NB_LYALPHA', 'NB_HALPHA', 'NB_SUMOII3726'), skysub=True, psf=None, beta=None, lbda=None, apertures=None, unit_wave=u.angstrom): """Extract spectra from a data cube. This method extracts several spectra from a data cube and from a list of narrow-band images (to define spectrum extraction apertures). First, it computes a subcube that has the same size along the spatial axis as the mask image given by ``obj_mask``. Then, the no-weighting spectrum is computed as the sum of the subcube weighted by the mask of the object and saved in ``self.spectra['MUSE_TOT']``. The weighted spectra are computed as the sum of the subcube weighted by the corresponding narrow-band image. They are saved in ``self.spectra[nb_ima] for nb_ima in tags_to_try``. For the weighted spectra, with the psf and narrow-band images, the optimal extraction algorithm for CCD spectroscopy Horne, K. 1986 is used. See `mpdaf.sdetect.compute_optimal_spectrum` for more detail. If ``psf`` is True: The potential PSF weighted spectrum is computed as the sum of the subcube weighted by multiplication of the mask of the object and the PSF. It is saved in self.spectra['MUSE_PSF'] If ``skysub`` is True: The local sky spectrum is computed as the average of the subcube weighted by the sky mask image. It is saved in ``self.spectra['MUSE_SKY']`` The other spectra are computed on the sky-subtracted subcube and they are saved in ``self.spectra['*_SKYSUB']``. Parameters ---------- cube : `~mpdaf.obj.Cube` Input data cube. obj_mask : str Name of the image that contains the mask of the object. sky_mask : str Name of the sky mask image. tags_to_try : list of str List of narrow-band images. skysub : bool If True, a local sky subtraction is done. psf : numpy.ndarray The PSF to use for PSF-weighted extraction. This can be a vector of length equal to the wavelength axis to give the FWHM of the Gaussian or Moffat PSF at each wavelength (in arcsec) or a cube with the PSF to use. No PSF-weighted extraction by default. beta : float or none If not none, the PSF is a Moffat function with beta value, else it is a Gaussian. lbda : (float, float) or none If not none, tuple giving the wavelength range. unit_wave : `astropy.units.Unit` Wavelengths unit (angstrom by default) If None, inputs are in pixels apertures : list of float List of aperture radii (arcseconds) for which a spectrum is extracted. """ if obj_mask not in self.images: raise ValueError('key %s not present in the images dictionary' % obj_mask) if skysub and sky_mask not in self.images: raise ValueError('key %s not present in the images dictionary' % sky_mask) ima = self.images[obj_mask] if ima.wcs.sameStep(cube.wcs): size = ima.shape[0] unit_size = None else: size = ima.wcs.get_step(unit=u.arcsec)[0] * ima.shape[0] unit_size = u.arcsec center = (self.dec, self.ra) subcub = cube.subcube(center=center, size=size, unit_center=u.deg, unit_size=unit_size, lbda=lbda, unit_wave=unit_wave) wcsref = subcub.wcs if not ima.wcs.isEqual(wcsref): ima = ima.resample( newdim=subcub.shape[1:], newstart=wcsref.get_start(unit=u.deg), newstep=wcsref.get_step(unit=u.arcsec), order=0, unit_start=u.deg, unit_step=u.arcsec) object_mask = ima.data.data if skysub: skymask = self.images[sky_mask] if not skymask.wcs.isEqual(wcsref): skymask = skymask.resample( newdim=subcub.shape[1:], newstart=wcsref.get_start(unit=u.deg), newstep=wcsref.get_step(unit=u.arcsec), order=0, unit_start=u.deg, unit_step=u.arcsec) # Get the sky spectrum and subtract it self.spectra['MUSE_SKY'] = subcub.mean(weights=skymask.data.data, axis=(1, 2)) subcub = subcub - self.spectra['MUSE_SKY'] suffix = '_SKYSUB' else: suffix = '' # No weighting spec = (subcub * object_mask).sum(axis=(1, 2)) self.spectra['MUSE_TOT' + suffix] = spec if apertures: tmpim = Image(data=np.zeros_like(object_mask, dtype=bool), copy=False, wcs=ima.wcs) for radius in apertures: tmpim.mask_ellipse(center, radius, 0) mask = object_mask.astype(bool) & tmpim.mask # spec = compute_spectrum(subcub, weights=mask) spec = (subcub * mask).sum(axis=(1, 2)) self.spectra['MUSE_APER_%.1f%s' % (radius, suffix)] = spec tmpim.unmask() # Loop over the narrow-band images we want to use. Apply the object # mask and ensure that the weight map within the object mask is >=0. if tags_to_try is not None: nb_tags = list(set(tags_to_try) & set(self.images)) ksel = (object_mask != 0) if ksel.sum() == 0: raise ValueError('object mask has 0 valid pixels') for tag in nb_tags: if self.images[tag].wcs.isEqual(wcsref): weight = self.images[tag].data.copy() weight[ksel] -= np.min(weight[ksel]) weight = weight.filled(0) self.spectra[tag + suffix] = compute_optimal_spectrum( subcub, object_mask, weight) # PSF if psf is not None: if len(psf.shape) == 3: # PSF cube. The user is responsible for getting the # dimensions right if not np.array_equal(psf.shape, subcub.shape): raise ValueError('Incorrect dimensions for the PSF cube ' '({}) (it must be ({})) ' .format(psf.shape, subcub.shape)) elif len(psf.shape) == 1: psf = create_psf_cube(subcub.shape, psf, beta=beta, wcs=wcsref) spec = compute_optimal_spectrum(subcub, object_mask, psf) self.spectra['MUSE_PSF' + suffix] = spec
# Insert the PSF weighted flux - here re-normalised?
[docs] def crack_z(self, eml=None, nlines=np.inf, cols=('LBDA_OBS', 'FLUX'), z_desc='EMI', zguess=None): """Estimate the best redshift matching the list of emission lines. Algorithm from Johan Richard (johan.richard@univ-lyon1.fr). This method saves the redshift values in ``self.z`` and lists the detected lines in ``self.lines``. ``self.info()`` could be used to print the results. Parameters ---------- eml : dict{float: str} Full catalog of lines to test redshift Dictionary: key is the wavelength value in Angtsrom, value is the name of the line. if None, the following catalog is used:: emlines = { 1215.67: 'LYALPHA1216' , 1550.0: 'CIV1550' , 1908.0: 'CIII]1909' , 2326.0: 'CII2326' , 3726.032: '[OII]3726' , 3728.8149: '[OII]3729' , 3798.6001: 'HTHETA3799' , 3834.6599: 'HETA3835' , 3869.0: '[NEIII]3869' , 3888.7: 'HZETA3889' , 3967.0: '[NEIII]3967' , 4102.0: 'HDELTA4102' , 4340.0: 'HGAMMA4340' , 4861.3198: 'HBETA4861' , 4959.0: '[OIII]4959' , 5007.0: '[OIII]5007' , 6548.0: '[NII6548]' , 6562.7998: 'HALPHA6563' , 6583.0: '[NII]6583' , 6716.0: '[SII]6716' , 6731.0: '[SII]6731' } nlines : int estimated the redshift if the number of emission lines is inferior to this value cols : (str, str) tuple (wavelength column name, flux column name) Two columns of self.lines that will be used to define the emission lines. z_desc : str Estimated redshift will be saved in self.z table under these name. zguess : float Guess redshift. Test if this redshift is a match and fills the detected lines """ nline_max = nlines if eml is None: eml = emlines col_lbda, col_flux = cols if self.lines is None: raise IOError('invalid self.lines table') if col_lbda not in self.lines.colnames: raise IOError('invalid colum name %s' % col_lbda) if col_flux not in self.lines.colnames: raise IOError('invalid colum name %s' % col_flux) try: # vacuum wavelengths wl = airtovac(np.array(self.lines[col_lbda])) flux = np.array(self.lines[col_flux]) nlines = len(wl) except Exception: self._logger.info('Impossible to estimate the redshift, no ' 'emission lines') return z, errz, nlines, wl, flux, lnames = crackz(nlines, wl, flux, eml, zguess) # observed wavelengths wl = vactoair(np.array(wl)) if nlines > 0: if nlines < nline_max: # redshift self.add_z(z_desc, z, errz) self._logger.info('crack_z: z=%0.6f err_z=%0.6f' % (z, errz)) # line names if 'LINE' not in self.lines.colnames: nlines = len(self.lines) col = MaskedColumn(ma.masked_array(np.array([''] * nlines), mask=np.ones(nlines)), name='LINE', dtype=STR_DTYPE, description='line name') self.lines.add_column(col) for w, name in zip(wl, lnames): self.lines['LINE'][ np.where(abs(self.lines[col_lbda] - w) < 0.01)] = name self._logger.info('crack_z: lines') for l in self.lines.pformat(): self._logger.info(l) else: self._logger.info('Impossible to estimate the redshift, the ' 'number of emission lines is inferior to %d', nline_max) else: self._logger.info('Impossible to estimate the redshift, no ' 'emission lines')
[docs] def sort_lines(self, nlines_max=25): """Sort lines by flux in descending order. Parameters ---------- nlines_max : int Maximum number of stored lines """ if self.lines is not None: if isinstance(self.lines['LINE'], MaskedColumn): self.lines['LINE'] = self.lines['LINE'].filled('') subtab1 = self.lines[self.lines['LINE'] != ''] subtab1.sort('FLUX') subtab1.reverse() n1 = len(subtab1) subtab2 = self.lines[self.lines['LINE'] == ''] subtab2.sort('FLUX') subtab2.reverse() n2 = len(subtab2) if (n1 + n2) > nlines_max: n2 = max(nlines_max - n1, 0) self.lines = vstack([subtab1, subtab2[0:n2]])
[docs] def show_ima(self, ax, name, showcenter=None, cuts=None, cmap='gray_r', **kwargs): """Show image. Parameters ---------- ax : matplotlib.axes._subplots.AxesSubplot Matplotlib axis instance (eg ax = fig.add_subplot(2,3,1)). name : str Name of image to display. showcenter : (float, str) radius in arcsec and color used to plot a circle around the center of the source. cuts : (float, float) Minimum and maximum values to use for the scaling. cmap : matplotlib.cm Color map. kwargs : matplotlib.artist.Artist kwargs can be used to set additional plotting properties. """ if name not in self.images: raise ValueError('Image %s not found' % name) zima = self.images[name] if cuts is None: vmin = None vmax = None else: vmin, vmax = cuts if 'title' not in kwargs: kwargs['title'] = '%s' % (name) zima.plot(vmin=vmin, vmax=vmax, cmap=cmap, ax=ax, **kwargs) if showcenter is not None: from matplotlib.patches import Ellipse rad, col = showcenter pix = zima.wcs.sky2pix((self.DEC, self.RA))[0] rpix = rad / zima.wcs.get_step(unit=u.arcsec)[0] ell = Ellipse((pix[1], pix[0]), 2 * rpix, 2 * rpix, 0, fill=False) ax.add_artist(ell) ell.set_clip_box(ax.bbox) ell.set_alpha(1) ell.set_edgecolor(col) ax.axis('off') return
[docs] def show_rgb(self, ax, names, showcenter=None, cuts=None, **kwargs): """Show RGB composite image. Parameters ---------- ax : matplotlib.axes._subplots.AxesSubplot Matplotlib axis instance (eg ax = fig.add_subplot(2,3,1)). names : [str, str, str] List of images corresponding to the blue, green and red filters. showcenter : (float, str) radius in arcsec and color used to plot a circle around the center of the source. cuts : [(float, float), (float, float), (float, float)] Minimum and maximum values to use for the scaling corresponding to the blue, green and red filters. kwargs : matplotlib.artist.Artist kwargs can be used to set additional plotting properties. Returns ------- ax : matplotlib AxesImage Matplotlib axis instance. images_aligned : list of `~mpdaf.obj.Image` The input images, but all aligned to that with the highest resolution. """ images = [] for im_name in names: if im_name not in self.images: raise ValueError('Image %s not found' % im_name) images.append(self.images[im_name]) if cuts is None: vmin = [None, None, None] vmax = [None, None, None] else: vmin, vmax = zip(*cuts) if 'title' not in kwargs: kwargs['title'] = ' '.join(names) _, images_aligned = plot_rgb(images, vmin=vmin, vmax=vmax, ax=ax, **kwargs) if showcenter is not None: from matplotlib.patches import Ellipse rad, col = showcenter pix = images_aligned[0].wcs.sky2pix((self.DEC, self.RA))[0] rpix = rad / images_aligned[0].wcs.get_step(unit=u.arcsec)[0] ell = Ellipse((pix[1], pix[0]), 2 * rpix, 2 * rpix, 0, fill=False) ax.add_artist(ell) ell.set_clip_box(ax.bbox) ell.set_alpha(1) ell.set_edgecolor(col) ax.axis('off') return ax, images_aligned
[docs] def show_spec(self, ax, name, cuts=None, zero=False, sky=None, lines=None, **kwargs): """Display a spectra. Parameters ---------- ax : matplotlib.axes._subplots.AxesSubplot Matplotlib axis instance (eg ax = fig.add_subplot(2,3,1)). name : str Name of spectra to display. cuts : (float, float) Minimum and maximum values to use for the scaling. zero : float If True, the 0 flux line is plotted in black. sky : `~mpdaf.obj.Spectrum` Sky spectra to overplot (default None). lines : str Name of a columns of the lines table containing wavelength values. If not None, overplot red vertical lines at the given wavelengths. kwargs : matplotlib.artist.Artist kwargs can be used to set additional plotting properties. """ spec = self.spectra[name] spec.plot(ax=ax, **kwargs) if zero: ax.axhline(0, color='k') if cuts is not None: ax.set_ylim(cuts) if sky is not None: ax2 = ax.twinx() if 'lmin' in kwargs: sky.plot(ax=ax2, color='k', alpha=0.2, lmin=kwargs['lmin'], lmax=kwargs['lmax']) else: sky.plot(ax=ax2, color='k', alpha=0.2) ax2.axis('off') if lines is not None: wavelist = self.lines[lines] for lbda in wavelist: ax.axvline(lbda, color='r') return
[docs] def masked_invalid(self, tables=None): """Mask where invalid values occur (NaNs or infs or -9999 or '').""" if tables is None: tables = ([self.lines, self.mag, self.z] + [self.tables[key] for key in self.tables.loaded_ext]) _mask_invalid(tables)
[docs] class SourceList(list): """Handles a list of `mpdaf.sdetect.Source` objects.""" source_class = Source
[docs] def write(self, name, path='.', overwrite=True, fmt='default'): """Create the directory and saves all sources files and the catalog file in this folder. ``path/name.fits``: catalog file (In FITS table, the maximum number of fields is 999. In this case, the catalog is saved as an ascci table). ``path/name/nameNNNN.fits``: source file (NNNN corresponds to the ID of the source) Parameters ---------- name : str Name of the catalog path : str path where the catalog will be saved. overwrite : bool Overwrite the catalog if it already exists fmt : str, 'working' or 'default' Format of the catalog. The format differs for the LINES table. """ if not os.path.exists(path): raise ValueError("Invalid path: {}".format(path)) path = os.path.normpath(path) path2 = os.path.join(path, name) if not os.path.exists(path2): os.makedirs(path2) else: if overwrite: shutil.rmtree(path2) os.makedirs(path2) for source in self: source.write('%s/%s-%04d.fits' % (path2, name, source.ID)) fcat = '%s/%s.fits' % (path, name) if overwrite and os.path.isfile(fcat): os.remove(fcat) from .catalog import Catalog cat = Catalog.from_sources(self, fmt) try: cat.write(fcat) except Exception: logger = logging.getLogger(__name__) logger.warning('Failed to write in FITS format, trying txt', exc_info=True) cat.write(fcat.replace('.fits', '.txt'), format='ascii')
[docs] @classmethod def from_path(cls, path): """Read a SourceList object from the path of a directory containing source files. Parameters ---------- path : str Directory containing `mpdaf.sdetect.Source` files """ if not os.path.exists(path): raise ValueError("Invalid path: {}".format(path)) slist = cls() for f in glob.glob(path + '/*.fits'): slist.append(cls.source_class.from_file(f)) return slist