Source code for mpdaf.MUSE.fsf

"""
Copyright (c) 2010-2018 CNRS / Centre de Recherche Astrophysique de Lyon
Copyright (c) 2018-2019 Simon Conseil <simon.conseil@univ-lyon1.fr>
Copyright (c)      2019 Roland Bacon <roland.bacon@univ-lyon1.fr>

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
   list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation
   and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
   may be used to endorse or promote products derived from this software
   without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
import astropy.units as u
import logging
import numpy as np
import warnings
from astropy.io import fits
from astropy.table import Table
from astropy.modeling.models import Moffat2D as astMoffat2D
from astropy.stats import sigma_clip

from ..obj import Cube, WCS, Image, iter_ima
from ..tools import all_subclasses

__all__ = ['Moffat2D', 'FSFModel', 'MoffatModel2', 'combine_fsf']


def find_model_cls(hdr):
    for cls in all_subclasses(FSFModel):
        if cls.model == hdr['FSFMODE']:
            break
    else:
        if hdr['FSFMODE'] != "MOFFAT1":  # old model comptatible with model=2
            raise ValueError('FSFMODE {} is not implemented'
                             .format(hdr['FSFMODE']))

    return cls


def norm_lbda(lbda, lb1, lb2):
    nlbda = (lbda - lb1) / (lb2 - lb1) - 0.5
    return nlbda


[docs] def Moffat2D(fwhm, beta, shape, center=None, normalize=True): """Compute Moffat for a value or array of values of FWHM and beta. Parameters ---------- fwhm : float or array of float Moffat fwhm in pixels. beta : float or array of float Power index of the Moffat. shape : tuple Spatial dimension of the FSF. center : tuple Center in pixel (if None the image center is used) normalize : bool If True, normalize the Moffat. Returns ------- PSF_Moffat : array (Nz, size, size) MUSE PSF """ # alpha coefficient in pixel alpha = fwhm / (2 * np.sqrt(2**(1 / beta) - 1)) amplitude = (beta - 1) * (np.pi * alpha**2) if center is None: x0, y0 = np.array(shape) / 2 - np.array([0.5, 0.5]) else: x0, y0 = center xx, yy = np.mgrid[:shape[0], :shape[1]] if np.isscalar(alpha) and np.isscalar(beta): model = astMoffat2D(amplitude, x0, y0, alpha, beta) moffat = model(xx, yy) # Normalization if normalize: moffat /= np.sum(moffat) else: if np.isscalar(beta): Nz = alpha.shape[0] beta = [beta] * Nz elif np.isscalar(alpha): Nz = beta.shape[0] alpha = [alpha] * Nz else: Nz = alpha.shape[0] if beta.shape[0] != Nz: raise ValueError('alpha and beta must have the same dimension') model = astMoffat2D(amplitude, [x0] * Nz, [y0] * Nz, alpha, beta, n_models=Nz) moffat = model(xx, yy, model_set_axis=False) # Normalization if normalize: moffat /= np.sum(moffat, axis=(1, 2))[:, np.newaxis, np.newaxis] return moffat
def get_images(cube, pos, size=5.0, nslice=20): # TODO: skip slice with masked value for the notch filter (in AO case) logger = logging.getLogger(__name__) logger.debug('getting %d images around object ra:%f dec:%f', nslice, *pos) l1, l2 = cube.wave.get_range() lb1, dl = np.linspace(l1, l2, nslice, endpoint=False, retstep=True) subc = cube.subcube(pos, size) imalist = [subc.get_image((l1, l1 + dl), method='mean') for l1 in lb1] white = subc.mean(axis=0) return white, lb1 + 0.5 * dl, imalist def fit_poly(x, y, deg, reject=3.0): logger = logging.getLogger(__name__) x = np.array(x) y = np.array(y) pol = np.polyfit(x, y, deg) yp = np.polyval(pol, x) err = yp - y if reject > 0: err_masked = sigma_clip(err, sigma=reject) xx = x[~err_masked.mask] if len(xx) < len(x): logger.debug('%d points rejected in polynomial fit', len(x) - len(xx)) yy = y[~err_masked.mask] pol = np.polyfit(xx, yy, deg) yp = np.polyval(pol, x) err = yp - y return (pol, yp, err) class FSFMultiModel(list): """Class to manage multiple FSF models.""" @classmethod def from_header(cls, hdr, pixstep, nfields=99): self = cls() klass = find_model_cls(hdr) self.model = klass.model for field in range(1, nfields + 1): self.append(klass.from_header(hdr, pixstep, field=field)) return self
[docs] class FSFModel: """Base class for FSF models.""" def __init__(self): self.logger = logging.getLogger(__name__)
[docs] @classmethod def read(cls, cube, field=None, pixstep=None): """Read the FSF model from a file, cube, or header. Parameters ---------- cube : str, `mpdaf.obj.Cube`, or `astropy.io.fits.Header` Must contain a header with a FSF model. field : int Field number to read, otherwise all models are read. """ if isinstance(cube, str): # filename cube = Cube(cube) if isinstance(cube, Cube): wcs = cube.wcs hdr = cube.primary_header elif isinstance(cube, fits.Header): hdr = cube wcs = WCS(hdr=hdr) if 'FSFMODE' not in hdr: raise ValueError('FSFMODE keyword not found') nfields = 1 if field is not None else hdr.get('NFIELDS', 1) if pixstep is None: try: pixstep = wcs.get_step(unit=u.arcsec)[0] except u.core.UnitConversionError: warnings.warn('could not find use pixstep from the header', UserWarning) pixstep = None if nfields > 1: return FSFMultiModel.from_header(hdr, pixstep, nfields=nfields) else: klass = find_model_cls(hdr) if field is not None: return klass.from_header(hdr, pixstep, field=field) else: for field in (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 99): try: return klass.from_header(hdr, pixstep, field=field) except ValueError: pass
[docs] @classmethod def from_header(cls, hdr, pixstep, field=0): """Read FSF parameters from a FITS header""" raise NotImplementedError
[docs] @classmethod def from_psfrec(cls, rawfilename): """Compute FSF parameters from GLAO MUSE PSF reconstruction""" raise NotImplementedError
[docs] @classmethod def from_starfit(cls, cube, pos, **kwargs): """Compute FSF by fitting a point source on a datacube""" raise NotImplementedError
[docs] @classmethod def from_hstconv(cls, cube, hstimages, lbrange=(5000, 9000), **kwargs): """Compute FSF by convolution of HST images""" raise NotImplementedError
def __repr__(self): return "<{}(model={})>".format(self.__class__.__name__, self.model)
[docs] def to_header(self, hdr=None): """Write FSF parameters to a FITS header""" if hdr is None: hdr = fits.Header() hdr['FSFMODE'] = (self.model, self.name) return hdr
[docs] def get_fwhm(self, lbda): """Return FWHM for the given wavelengths.""" raise NotImplementedError
[docs] def get_beta(self, lbda): """Return beta for the given wavelengths.""" raise NotImplementedError
[docs] def get_2darray(self, lbda, shape, center=None): """Return FSF 2D array at the given wavelength.""" if not np.isscalar(lbda): raise ValueError return Moffat2D(self.get_fwhm(lbda, unit='pix'), self.get_beta(lbda), shape, center)
[docs] def get_image(self, lbda, wcs, center=None): """Return FSF image at the given wavelength.""" if not np.isscalar(lbda): raise ValueError data = self.get_2darray(lbda, (wcs.naxis2, wcs.naxis1), center) return Image(wcs=wcs, data=data)
[docs] def get_3darray(self, lbda, shape, center=None): """Return FSF cube at the given wavelengths.""" return Moffat2D(self.get_fwhm(lbda, unit='pix'), self.get_beta(lbda), shape, center)
[docs] def get_cube(self, wave, wcs, center=None): """Return FSF cube at the given wavelengths.""" lbda = wave.coord() data = self.get_3darray(lbda, (wcs.naxis2, wcs.naxis1), center) return Cube(wcs=wcs, wave=wave, data=data)
[docs] class MoffatModel2(FSFModel): """Circular MOFFAT beta=poly(lbda) fwhm=poly(lbda).""" name = "Circular MOFFAT beta=poly(lbda) fwhm=poly(lbda)" model = 2 def __init__(self, fwhm_pol, beta_pol, lbrange, pixstep, field=0): """ Create a FSF object Parameters ---------- fwhm_pol : list list of polynome coefficients for FWHM(l):: FWHM(l) = fwhm_pol[0] * l**deg + ... + fwhm_pol[deg] l = (lbda - lb1) / (lb2 - lb1) - 0.5 beta_pol : list list of polynome coefficients for beta(l) lbrange : tuple lb1,lb2 wavelengths used for wavelength normalisation pixstep : float spaxel value in arcsec field : int field location in case of multiple FSF Returns ------- fsf : `~mpdaf.MUSE.MoffatModel2` fsf model """ super().__init__() self.fwhm_pol = fwhm_pol self.beta_pol = beta_pol self.lbrange = lbrange self.pixstep = pixstep self.field = field
[docs] @classmethod def from_header(cls, hdr, pixstep, field=0): """ Read FSF from file header Parameters ---------- hdr : `astropy.io.fits.Header` FITS header pixstep : float spaxel value in arcsec Returns ------- fsf : `~mpdaf.MUSE.MoffatModel2` fsf model """ if 'FSFMODE' not in hdr: raise ValueError('Missing FSFMODE keyword in file header') if hdr['FSFMODE'] == 'MOFFAT1': # old model if 'FSF%02dBET' % field not in hdr: raise ValueError('FSF%02dBET not found in header' % field) _beta = hdr['FSF%02dBET' % field] _a = hdr['FSF%02dFWA' % field] _b = hdr['FSF%02dFWB' % field] # Convert the model to a model=2 one. l1, l2 = 5000, 9000 a = _b * (l2 - l1) b = _a + a * (l1 / (l2 - l1) + 0.5) fwhm_pol = [a, b] return MoffatModel2(fwhm_pol, [_beta], (l1, l2), pixstep) else: if 'FSFLB1' not in hdr or 'FSFLB2' not in hdr: raise ValueError( 'Missing FSFLB1/FSFLB2 keywords in file header') lbrange = (hdr['FSFLB1'], hdr['FSFLB2']) if lbrange[1] <= lbrange[0]: raise ValueError('Wrong FSF lambda range') if 'FSF%02dFNC' % field not in hdr: raise ValueError('FSF%02dFNC not found in header' % field) ncf = hdr['FSF%02dFNC' % field] fwhm_pol = [hdr['FSF%02dF%02d' % (field, k)] for k in range(ncf)] ncb = hdr['FSF%02dBNC' % field] beta_pol = [hdr['FSF%02dB%02d' % (field, k)] for k in range(ncb)] return cls(fwhm_pol, beta_pol, lbrange, pixstep, field=field)
[docs] def to_header(self, hdr=None, field_idx=0): """ Write FSF in file header Parameters ---------- hdr : `astropy.io.fits.Header` FITS header field_idx : int field index Returns ------- hdr : `astropy.io.fits.Header` FITS header """ hdr = super().to_header(hdr=hdr) hdr['FSFLB1'] = (self.lbrange[0], 'FSF Blue Ref Wave (A)') hdr['FSFLB2'] = (self.lbrange[1], 'FSF Red Ref Wave (A)') hdr['FSF%02dFNC' % field_idx] = ( len(self.fwhm_pol), 'FSF{:02d} FWHM Poly Ncoef'.format(field_idx)) for k, coef in enumerate(self.fwhm_pol): hdr['FSF%02dF%02d' % (field_idx, k)] = ( coef, 'FSF{:02d} FWHM Poly C{:02d}'.format(field_idx, k)) hdr['FSF%02dBNC' % field_idx] = ( len(self.beta_pol), 'FSF{:02d} BETA Poly Ncoef'.format(field_idx)) for k, coef in enumerate(self.beta_pol): hdr['FSF%02dB%02d' % (field_idx, k)] = ( coef, 'FSF{:02d} BETA Poly C{:02d}'.format(field_idx, k)) return hdr
[docs] @classmethod def from_psfrec(cls, rawfilename, **kwargs): """ Compute Reconstructed FSF from AO telemetry Need muse_psfrec external python module. Parameters ---------- rawfilename : str MUSE raw file name with AO telemetry information Returns ------- fsf : `~mpdaf.MUSE.MoffatModel2` fsf model """ # Try to import muse-psfr, if not available raise an error from muse_psfr import psfrec logger = logging.getLogger(__name__) logger.debug('Computing PSF from Sparta data file %s', rawfilename) res = psfrec.compute_psf_from_sparta(rawfilename, **kwargs) for k, r in enumerate(Table(res[1].data)): logger.debug( '%02d: Seeing %.02f,%.02f,%.02f,%.02f ' 'GL %.02f,%.02f,%.02f,%.02f L0 %.02f,%.02f,%.02f,%.02f', k + 1, r['LGS1_SEEING'], r['LGS2_SEEING'], r[ 'LGS3_SEEING'], r['LGS4_SEEING'], r['LGS1_TUR_GND'], r['LGS2_TUR_GND'], r[ 'LGS3_TUR_GND'], r['LGS4_TUR_GND'], r['LGS1_L0'], r['LGS2_L0'], r['LGS3_L0'], r['LGS4_L0'] ) data = res['FIT_MEAN'].data lbda, fwhm, beta = (data['lbda'], data['fwhm'][:, 0], data['n']) logger.debug('Fitting polynomial on FWHM (lbda) and Beta(lbda)') res = psfrec.fit_psf_with_polynom(lbda, fwhm, beta, output=0) fsf = cls(lbrange=(res['lbda_lim'][0] * 10, res['lbda_lim'][1] * 10), fwhm_pol=res['fwhm_pol'], beta_pol=res['beta_pol'], pixstep=0.2) return fsf
[docs] @classmethod def from_starfit(cls, cube, pos, size=5, nslice=20, fwhmdeg=3, betadeg=3, lbrange=(5000, 9000), factor=1, saveimafit=False): """ Fit a FSF model on a point source Parameters ---------- cube : `mpdaf.obj.Cube` input datacube pos : tuple of float (dec,ra) location of the source in deg size : float size of region to extract around the source in arcsec nslice : int number of wavelength slices to used fwhmdeg : int degre for polynomial fit of FWHM(lbda) betadeg : int degre for polynomial fit of Beta(lbda) lbdarange: tuple of float (lbda1,lbda2) reference wavelengths for normalisation factor: int subsampling factor used in moffat fit Returns ------- fsf : `~mpdaf.MUSE.MoffatModel2` fsf model with intermediate fitting results as .fit attribute fsf.fit : dict center : array of fitted star location wave : array of wavelengths fwhmfit : array of fitted FWHM fwhmerr : array of errors in FWHM returned by the fit fwhmpol : list of FWHM polynomial betafit : array of fitted beta betaerr : array of errors in beta returned by the fit betapol : list of beta polynomial center0 : first iteration of fitted star location fwhm0 : first iteration of fitted FWHM beta0 : first iteration of fitted beta ima : list of images used in the fit """ dec, ra = pos logger = logging.getLogger(__name__) logger.info('FSF from star fit at Ra: %.5f Dec: %.5f Size %.1f ' 'Nslice %d FWHM poly deg %d BETA poly deg %d', pos[1], pos[0], size, nslice, fwhmdeg, betadeg) white, lbda, imalist = get_images(cube, pos, size=size, nslice=nslice) lbdanorm = norm_lbda(lbda, lbrange[0], lbrange[1]) if saveimafit: logger.debug('Save Ima fit and residuals') imafit = [] imares = [] logger.debug('-- First fit on white light image') fit1 = white.moffat_fit(fwhm=(0.8, 0.8), n=2.5, circular=True, fit_back=True, verbose=False, factor=factor) logger.debug('RA: %.5f DEC: %.5f FWHM %.2f BETA %.2f PEAK %.1f ' 'BACK %.1f', fit1.center[1], fit1.center[0], fit1.fwhm[0], fit1.n, fit1.peak, fit1.cont) logger.debug('-- Second fit on all images') fit2 = [] for k, ima in enumerate(imalist): f2 = ima.moffat_fit(fwhm=fit1.fwhm[0], n=fit1.n, center=fit1.center, fit_n=True, circular=True, fit_back=True, verbose=False, factor=factor) logger.debug('%d RA: %.5f DEC: %.5f FWHM %.2f BETA %.2f PEAK %.1f ' 'BACK %.1f', k + 1, f2.center[1], f2.center[0], f2.fwhm[0], f2.n, f2.peak, f2.cont) fit2.append(f2) logger.debug('-- Third fit on all images') fit3 = [] beta_fit = np.array([f.n for f in fit2]) logger.debug('-- Polynomial fit of BETA(lbda)') beta_pol, beta_pval, beta_err = fit_poly(lbdanorm, beta_fit, betadeg) logger.debug('BETA poly {}'.format(beta_pol)) for k, ima in enumerate(imalist): f2 = ima.moffat_fit(fwhm=fit1.fwhm[0], n=beta_pval[k], center=fit1.center, fit_n=False, circular=True, fit_back=True, verbose=False, factor=factor, full_output=saveimafit) logger.debug('RA: %.5f DEC: %.5f FWHM %.2f BETA %.2f PEAK %.1f ' 'BACK %.1f', f2.center[1], f2.center[0], f2.fwhm[0], f2.n, f2.peak, f2.cont) fit3.append(f2) if saveimafit: imafit.append(f2.ima) res = f2.ima.copy() res.data[:,:] = ima.data - f2.ima.data imares.append(res) fwhm_fit = np.array([f.fwhm[0] for f in fit3]) logger.debug('-- Polynomial fit of FWHM(lbda)') fwhm_pol, fwhm_pval, fwhm_err = fit_poly(lbdanorm, fwhm_fit, fwhmdeg) logger.debug('FWHM poly {}'.format(fwhm_pol)) fsf = cls(lbrange=lbrange, fwhm_pol=fwhm_pol, beta_pol=beta_pol, pixstep=cube.get_step()[1]*3600) logger.debug('-- return FSF model') fsf.fit = {'center': np.array([f.center for f in fit3]), 'wave': lbda, 'fwhmfit': fwhm_fit, 'fwhmpol': fwhm_pval, 'fwhmerr': fwhm_err, 'betafit': beta_fit, 'betapol': beta_pval, 'betaerr': beta_err, 'center0': fit1.center, 'fwhm0': fit1.fwhm[0], 'beta0': fit1.n, 'ima': imalist} if saveimafit: fsf.fit['imafit'] = imafit fsf.fit['imares'] = imares return fsf
[docs] @classmethod def from_FSFlist(cls, imalist, lbda, fwhm0, beta0, fwhmdeg=3, betadeg=3, lbrange=(5000, 9000)): """ Fit a FSF model on a point source Parameters ---------- imalist : List of `mpdaf.obj.Image` List of FSF images lbda : array Wavelength vector corresponding to the list of FSFs fwhm0 : float Value used to initialize the FWHM in the Moffat fit beta0 : float Value used to initialize the beta parameter in the Moffat fit fwhmdeg : int degre for polynomial fit of FWHM(lbda) betadeg : int degre for polynomial fit of Beta(lbda) lbdarange: tuple of float (lbda1,lbda2) reference wavelengths for normalisation Returns ------- fsf : `~mpdaf.MUSE.MoffatModel2` fsf model """ lbdanorm = norm_lbda(lbda, lbrange[0], lbrange[1]) fit = [] for k, ima in enumerate(imalist): f = ima.moffat_fit(fwhm=fwhm0, n=beta0, fit_n=True, circular=True, fit_back=True, verbose=False) fwhm0 = f.fwhm[0] beta0 = f.n fit.append(f) beta_fit = np.array([f.n for f in fit]) beta_pol, beta_pval, beta_err = fit_poly(lbdanorm, beta_fit, betadeg) fwhm_fit = np.array([f.fwhm[0] for f in fit]) fwhm_pol, fwhm_pval, fwhm_err = fit_poly(lbdanorm, fwhm_fit, fwhmdeg) fsf = cls(lbrange=lbrange, fwhm_pol=fwhm_pol, beta_pol=beta_pol, pixstep=imalist[0].get_step()[0]) return fsf
[docs] def info(self): """ Print fsf model information """ self.logger.info('Wavelength range: %s-%s', self.lbrange[0], self.lbrange[1]) self.logger.info('FWHM Poly: %s', self.fwhm_pol) fwhm = self.get_fwhm(np.array(self.lbrange)) self.logger.info('FWHM (arcsec): %.2f-%.2f', fwhm[0], fwhm[1]) self.logger.info('Beta Poly: %s', self.beta_pol) beta = self.get_beta(np.array(self.lbrange)) self.logger.info('Beta values: %.2f-%.2f', beta[0], beta[1])
[docs] def get_fwhm(self, lbda, unit='arcsec'): """ Return FWHM Parameters ---------- lbda : float or array of float wavelengths unit : str arcsec or pix, unit of FWHM Returns ------- FWHM : float or array """ lb = norm_lbda(lbda, self.lbrange[0], self.lbrange[1]) fwhm = np.polyval(self.fwhm_pol, lb) if unit == 'pix': fwhm /= self.pixstep return fwhm
[docs] def get_beta(self, lbda): """ Return beta values Parameters ---------- lbda : float or array of float wavelengths Returns ------- beta : float or array """ lb = norm_lbda(lbda, self.lbrange[0], self.lbrange[1]) return np.polyval(self.beta_pol, lb)
def _convolve_one(self, lbda, cfwhm, size=21, samp=10): """ convolve the FSF by a given kernel """ shape = (size * samp, size * samp) fwhm0 = self.get_fwhm(lbda, unit='pix') * samp beta0 = self.get_beta(lbda) data = Moffat2D(fwhm0, beta0, shape) im = Image(wcs=WCS(shape=shape), data=data) cfwhmpix = cfwhm * samp / self.pixstep cim = im.fftconvolve_gauss(fwhm=(cfwhmpix, cfwhmpix), unit_center=None, unit_fwhm=None) fit = cim.moffat_fit(fit_back=False, circular=True, unit_fwhm=None, unit_center=None, verbose=False) fwhm = fit.fwhm[0] * self.pixstep / samp beta = fit.n return fwhm, beta
[docs] def convolve(self, cfwhm, samp=10, nlbda=20, size=21, full_output=False): """ Convolve the FSF with a Gaussian kernel Parameters ---------- cfwhm : float Gaussian FWHM in arcsec samp : int Resampling factor nlbda : int Number of wavelengths size : int Image FSF size in pixel full_output: bool If True, return an additional dictionary Returns ------- fsf : `~mpdaf.MUSE.fsf.MoffatModel2` fsf model res : dict res['lbda']: wavelengths res['fwhm0']: initial FWHM values res['fwhm1']: FWHM values after convolution res['beta0']: initial BETA values res['beta1']: BETA values after convolution """ lbda = np.linspace(self.lbrange[0], self.lbrange[1], nlbda) fwhm1 = [] beta1 = [] for lb in lbda: f, b = self._convolve_one(lb, cfwhm, size=size, samp=samp) fwhm1.append(f) beta1.append(b) lbdanorm = norm_lbda(lbda, self.lbrange[0], self.lbrange[1]) fwhm_pol, _, _ = fit_poly(lbdanorm, fwhm1, len(self.fwhm_pol) - 1) beta_pol, _, _ = fit_poly(lbdanorm, beta1, len(self.beta_pol) - 1) fsf = MoffatModel2(fwhm_pol, beta_pol, self.lbrange, self.pixstep) if full_output: fwhm0 = self.get_fwhm(lbda) beta0 = self.get_beta(lbda) return fsf, dict(fwhm0=fwhm0, fwhm1=fwhm1, beta0=beta0, beta1=beta1, lbda=lbda) else: return fsf
def fwhm_moffat2gauss(fwhm, beta): """ translate a MOFFAT fwhm,beta in GAUSS equivalent fwhm """ pol = np.array( [-1.89848758e-03, 3.37400959e-02, -2.38556527e-01, 8.50778040e-01, -1.58670491e+00, 2.39768917e+00]) gfwhm = fwhm * np.polyval(pol, beta) return gfwhm
[docs] def combine_fsf(fsflist, nlbda=20, size=21): """ Combine a list of FSF Parameters ---------- fsflist : list of `~mpdaf.MUSE.MoffatModel2` list of FSF models nlbda : int Number of wavelengths size : int Image FSF size in pixel Returns ------- fsf : `~mpdaf.MUSE.MoffatModel2` fsf model cube : `~mpdaf.obj.Cube` cube of FSF """ lbda = np.linspace(fsflist[0].lbrange[0], fsflist[0].lbrange[1], nlbda) shape = (size, size) # compute array fsfcube = fsflist[0].get_3darray(lbda, shape) for fsf in fsflist[1:]: fsfcube += fsf.get_3darray(lbda, shape) fsfcube /= fsfcube.sum(axis=(1, 2))[:, None, None] # create FSF datacube as average of all FSF for each lbda fsfcube = Cube(data=fsfcube, wcs=WCS(), copy=False) fwhm = [] beta = [] for im in iter_ima(fsfcube): # fit a Moffat fit = im.moffat_fit(fit_back=False, circular=True, unit_fwhm=None, unit_center=None, verbose=False) fwhm.append(fit.fwhm[0] * 0.2) beta.append(fit.n) # polynomial fit lbdanorm = norm_lbda(lbda, fsflist[0].lbrange[0], fsflist[0].lbrange[1]) fwhm_pol, _, _ = fit_poly(lbdanorm, fwhm, len(fsflist[0].fwhm_pol) - 1) beta_pol, _, _ = fit_poly(lbdanorm, beta, len(fsflist[0].beta_pol) - 1) fsf = MoffatModel2(fwhm_pol, beta_pol, fsflist[0].lbrange, fsflist[0].pixstep) return fsf, fsfcube
# class EllipticalMoffatModel(FSFModel): # model = 3 # name = "Elliptical MOFFAT beta=poly(lbda) fwhmx,y=polyx,y(lbda) pa=cste"